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1 Introduction
For several years microprocessor performance stag-
nated making alternative architectures, such as
FPGA, GPU, and Cell, attractive alternatives for com-
pute intensive applications. Now with multicore be-
coming the mainstream, the comparisons have be-
come more complex. While the potential performance
of processor chips is once again increasing rapidly,
changing the accelerator comparison dynamic, they
are harder to use at high efficiency than their single
core predecessors, and have inherent limitations for
some applications.

In this abstract, we describe a case study of an ap-
plication that has only been parallelized with great diffi-
culty, has not yet been shown to be scalable, but which
is amenable to massive speed-ups with FPGAs. The
key in the latter design is taking advantage of the ultra
fine-grained parallelism supported by FPGAs. Here
we show that the same basic design can also be ap-
plied to multicore processors, and has the potential to
be scalable at least while processing remains on-chip.

2 Discrete Molecular Dynamics
Molecular dynamics (MD) simulation is a fundamen-
tal tool for gaining the understanding of chemical and
biological systems. Reductionist approaches to MD
alone, however, are insufficient for exploring a vast
array of problems of interest. With traditional time-
step driven MD, the computational gap between the
largest published simulations and cell-level processes
remains at least 12 orders of magnitude.

In contrast, intuitive modeling is hypothesis-driven
and based on tailoring simplified models to the physi-
cal systems of interest. Using intuitive models, simula-
tion length and time scales can exceed those of time-
step driven MD by eight or more orders of magnitude
[1]. The most important aspect of these physical sim-
plifications, with respect to their effects on the mode of
computation, is discretization: atoms are modeled as
hard spheres, covalent bonds as infinite barriers, and
the van der Waals force as square wells. This enables
simulations to be advanced by event, rather than time
step: events occur when two particles reach a discon-
tinuity in interparticle potential.
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Even so, as with most simulations, discrete event
simulation (DES) of molecular dynamics (DMD) is
compute bound. A major problem with DMD is that,
even more so than with DES in general [2], causality
concerns make DMD challenging to scale to a signifi-
cant number of processors [4].
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Figure 1: DES sketch.

Figure 1 shows the
basic components of
a generic DES sys-
tem: simulation pro-
ceeds as a series of dis-
crete element-wise in-
teractions. As each
event is processed, its
consequences must be
predicted. These in-
clude the generation of

new events, and the cancellation of previously pre-
dicted events. Performance of well-tuned systems [6]
for basic force models can reach 200K events/s [5].

Parallelization of DES has generally taken one of
two approaches: (i) conservative, which guarantees
causal order, or (ii) optimistic, which allows some
speculative violation of causality and corrects viola-
tions with rollback. Neither approach has worked well
for DMD. The conservative approach, which relies on
there being a “safe” window, falters because in DMD
there is none. Processed events invalidate predicted
events anywhere in the event queue with equal proba-
bility, and potentially anywhere in the simulated space.
The optimistic approach has frequent rollbacks, result-
ing in only ��

�
� � scaling, even in theory [4].

3 DMD on FPGA
In our FPGA implementation we take a different ap-
proach that incorporates both conservative and op-
timistic aspects and achieve a performance of 50M
events/s. We process the entire simulation as one long
computation pipeline (see Figure 2). While dozens
of events are processed simultaneously, at most one
event is committed per cycle. To achieve maximum
throughput, the following must be done within a sin-
gle cycle: (i) update the system state, (ii) process all
causal event cancellations and (iii) new event inser-
tions, and (iv) advance the event priority queue. Each
of these operations requires a complex structure (as
described in [5]).
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Figure 2: DMD on FPGA.

As in a CPU,
dependences
combined with
overlapped ex-
ecutions cause
hazards. These
are compounded
by speculation,
and also by
another factor
generally not an issue with microprocessors: part of
the processing pipeline (the event queue) is neces-
sarily in off-chip memory. These issues lead to four
complications, which are now enumerated; sketches
of their solutions can be found in [3, 5].
1. Causality Hazards. New events can be inserted
anywhere in the pipeline, including processing stages.
2. Coherence Hazards. Events entering the predic-
tor unit may be cancelled by an event that has not yet
committed.
3. Combined Causality/Coherence Hazards.
Events that need to be inserted into the predictor unit
stages face both types of hazards.
4. Off-chip event queue performance. Enabling
���� execution of these functions depends heavily on
associative operators. For simulations which enqueue
more than a few thousand of events, off-chip memory
must be used. The issue is to prevent software emu-
lation from degrading performance to ���������.

4 DMD on Multicore
While parallel DMD (PDMD) has been studied exten-
sively, we know of no existing production implemen-
tation. We postulate that a key issue is that previous
studies (where any speed-up was achieved) all used
spatial decomposition plus some form of rollback. This
approach is problematic because, as processing tech-
nology has advanced, the relative time to rollback has
increased with respect to time to process events.

We propose an alternate method based on our
FPGA implementation: task-based decomposition
with overlapped event processing, but with serial com-
mitment. While this serialization obviously limits po-
tential speed-up, we see that the FPGA still gains 200x
over a highly tuned code. With multicore, the baseline
is that each event requires at least 5us, while commit-
ment only involves updating a small number of struc-
tures: commitment should take only a small fraction
of that time. With complex force models, the potential
should be even greater.

There is some overhead involved to make this
work. We need to check or ensure the following:
– Before speculative event processing, is another
event being processed that could cause this event to
be cancelled? Cancelling this event is not difficult, the
problem is mispredicting new events.

– During speculative event processing, were we inval-
idated?
– During event prediction, was another event inserted
ahead of us which would cause those predictions to
become invalid?
– Atomic, in order, commitment.

The implementation adds certain structures and
functions: a list of events being executed speculatively,
neighborhood checks to ensure coherent predictions,
and locks to ensure correct execution.

5 Results and Discussion
Table 1: Multicore performance. BL is baseline code
with time/event in us. Other numbers are speed-ups.
Model 1 is uniform ideal gas with 131,000 particles.
Models 2 and 3 add overhead per event.

Threads model 1 model 2 model 3
BL 10.0us 57.6us 523us
1 0.81x 1.00x 1.00x
2 0.79x 1.64x 1.92x
3 0.47x 2.20x 2.80x
4 0.23x 2.39x 3.65x

Table 1 shows performance of our just-completed
initial (unoptimized) multicore implementation. Sim-
ulations were run on an Intel 2.5GHz Xeon E5420
Quad Core processor. For the basic ideal gas sim-
ulation, multithreading resulted in a substantial slow-
down. Model 2 represents more closely simple models
of biological interest: it shows good performance with
two threads. Model 3 represents substantially more
complex models and shows reasonable performance
through four threads.

We have just begun analyzing this implementation.
We anticipate being able to determine soon the par-
tition of overhead between the intrinsic, such as syn-
chronization, and application specific, such as pauses
due to coherence hazards. Further work will certainly
be necessary in optimizing the locks. Future work is
to extend this to multiple sockets, and then to combine
spatial and task-based decomposition.
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