
Power Consumption of Desktop and Mobile GPU’s for IRSTAP Applications

Michael Roeder, roederm@saic.com
Jeremy Furtek, Jeremy.d.furtek@saic.com

Nolan Davis, nolan.r.davis@saic.com
Cezario Tebcherani, cezario.e.tebcherani@saic.com

Masatoshi Tanida, masatoshi.tanida@saic.com
Dennis Braunreiter, dennis.c.braunreiter@saic.com

Scientific Applications International Corporation

Abstract
Emerging capabilities in stream and multi-core computation
along with high speed memory bandwidths in commercial
graphics processor (GPU) architectures are enabling
breakthrough low cost and low power teraflop computing
solutions to DoD embedded computing challenges.

Under the DARPA MTO STAP-BOY program, SAIC has
developed mappings of complex signal processing
algorithms to GPU architectures. The work discussed in
this presentation is from STAP-BOY phase two which has
focused on using CUDA from NVIDIA to develop
prototypes for fieldable applications running on NVIDA
GPUs in low power high performance embedded
environments.

For phase two of the DARPA STAP-BOY program, we
have implemented a highly adaptive IR STAP algorithm
using CUDA tools from NVIDIA. Unlike many previous
algorithms developed [1] this algorithm performs all STAP
computation from end to end entirely on the GPU without
intermediate GPU to CPU transfers. This end to end
implementation allows for considerable performance
improvement and allows for considerable power savings.

In our presentation we will discuss the performance and
performance to power ratios for the kernels in our end to
end STAP algorithm running on both desktop and mobile
GPUs.

The conclusions reached in the STAP-BOY phase two
program is that modern GPU API’s such as CUDA lead to
order(s) of magnitude power/watt/cost improvements over
CPU and DSP solutions. Additionally with the new tools
that are available a very wide variety of algorithms can be
mapped efficiently to GPUs with modern programming
APIs such as CUDA, with high productivity in application
development.

IR STAP Overview
The goal for this demonstration application is to detect all
people moving within a large city environment in real time.
Figure 1 shows example output of our STAP algorithm
within a notional graphical user interface. The box on the
upper left shows a zoomed out view of the entire city, the
other three boxes are zoomed in displays highlighting
individual people walking in the city.

The input to our application is a live IR video feed and the
output is a detection list of objects that match user specified

signatures and velocity hypotheses. For our test data we
have used a sequence of 5Kx5K pixel images taken of a
small city at 2hz with roughly 0.6m/pixel resolution. Our
goal for this application was to detect people at near real
time using multiple low power GPUs.

Figure 1: IR STAP notional graphical user interface.

The STAP processing chain roughly breaks down into six
steps that are described below.

1. Convert Input Data to 0 Mean Data (“Demean”)
2. Adaptive Covariance Estimation
3. Compute Adaptive Matched Filter (AMF) Weights

a. Factor Covariance Matrices
b. Solve for adapted weights

4. Apply Weights with Convolution
5. Generate Adaptive CFAR Threshold Estimates
6. Gather Detections from Convolution Output

These six processing steps are performed entirely on the
GPU using multiple CUDA kernels that exhibit a variety of
memory access and processing patterns. The data flow
between these six processing steps is roughly diagramed in
Figure 2.

Figure 2: IR STAP data flow diagram.

Performance Measurements
Table 1 compares the performance of desktop vs. mobile
GPU parts for three of our IR STAP kernels. The results
we have attained with mobile parts have indicated the 8800
offers excellent power scaling opportunities for embedded
computing. For many of our benchmarks the 8800M GTX
has offered performance near that of the 8800 GTX despite
the fact that it consumes just over 1/3 the power of the 8800
GTX.

Table 1: 8800 GTX vs. 8800M GTX

 8800 GTX 8800M GTX
Operation GFLOP/s GFLOP/W GFLOP/s GFLOP/W

Cholesky 10.46 0.059 7.41 0.116
Weight Solve 9.77 0.055 6.55 0.102
Covariance 113.33 0.640 62.86 0.982

Figure 3 describes the relative processing times for the
various processing steps of our IR STAP application. This
diagram shows that two bottlenecks that were common with
earlier GPU implementations, namely CPU/GPU memory
transfers and scatter/gather operations, have been overcome
in our implementation. Prior to CUDA, GPUS were
programmed with shader programming languages that
required frequent CPU/GPU memory transfers and often
limited the programmer’s ability to perform scatter/gather
operations. Using CUDA we were able to implement our
application such that it requires few memory transfers and
performs a gather step (detection gather) very rapidly. In
our implementation the transfer and detection steps only
take 7% and 1% of our overall processing time.

Figure 3: IR STAP execution profile.

Figure 4 shows that GPU based matrix multiplication
operations exhibit significant improvements to the
power/performance ratio over both traditional CPU based
architectures as well as to IBM Cell architectures.

 STAP Velocity
Hypothesis

Figure 4: GFLOPs per Watt for Multiplication on Various

Architectures1

The performance and performance/power ratios of our
various kernels will be discussed in greater detail in our
presentation.

Conclusions
Many of the limitations that previously existed to GPU
programming have been overcome with modern
programming tools such as CUDA. With CUDA a wide
variety of applications and types of parallelism can be
exploited with excellent performance and little CPU/GPU
transfer overhead.

In addition GPU’s offer excellent performance/power ratios
and the ability to scale power consumption up or down by
using different GPU parts (mobile vs. desktop) which make
them well suited for low power high performance
applications.

With these improvements to development tools and their
excellent power characteristics GPUs are becoming
competitive with FPGA and DSP processors for DSP
applications.

References
[1] D. Healy, D. Braunreiter, J. Sillaci, D. Boe, J. Furtek, and

X.Sun, “DARPA STAT BOY: Fast Hybrid QR-Cholesky
Factorization and Tuning Techniques for STAP Algorithm
Implementation on GPU Architectures”, HPEC 2007
Workshop, Lexington, MA, September 2007

 [2] GPU Sgemm Implementation, Vasily Volkov, NVIDIA
CUDA Forums,
http://forums.nvidia.com/index.php?showtopic=47689

[3] NVIDIA Corporation, “NVIDIA CUDA Compute Unified
Device Architecture Programming Guide”, Version 1.1, June
2007

1 GPU matrix multiplication results generated with SGemm
implementation by Vasily Volkov [2]

Adapt Matched
Filter Weights

 Estimate Local
Space-Time
Covariance

Space-Time
Multiple Weight

Solver

…

 Distribute
Imagery to

GPUs

 Space-
Time AMF Apply Adaptive

Matched Filters

 Space-
Time AMF

 Space-
Time AMF Covariance

Factorization
Generate
Detection

List
 Estimate

CFAR
Thresholds

