
HPEC2008-1
AJH-HTN 09/24/08

MIT Lincoln Laboratory

An Ethernet-Accessible Control
Infrastructure for Rapid FPGA

Development

Andrew Heckerling, Thomas Anderson,
Huy Nguyen, Greg Price, Sara Siegal, John Thomas

 This work is sponsored by the Department of the Air Force, under Air Force Contract
FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are
those of the authors and are not necessarily endorsed by the United States Air Force.

High Performance Embedded Computing Workshop

24 September 2008

Presenter
Presentation Notes
This is the title slide.

MIT Lincoln Laboratory
HPEC2008-2

AJH-HTN 09/24/08

Outline

• Introduction and Motivation
• Container Infrastructure

– Concept
– Implementation

• Example Application
• Summary

Presenter
Presentation Notes
This is the outline.

MIT Lincoln Laboratory
HPEC2008-3

AJH-HTN 09/24/08

Rapid Advanced Processor In Development
(RAPID)

Custom
VME / VPX

MicroTCA

COTS Boards

Control
Sig. Proc.

Capture

Composable
Processor

Board

Form Factor Selection

D
es

ig
n

FPGA
Container

Infrastructure

IOKnown Good
Designs

RAPID Tiles and IP Library

Main features of RAPID:
• Composable processor board

– Custom processor composed from tiles extracted from known-good boards
 Form factor highly flexible

– Tiles accompanied with verified firmware / software for host computer interface
• Co-design of boards and IPs

– Use portable FPGA Container Infrastructure to develop functional IPs
 Container has on-chip control infrastructure, off-chip memory access,

and host computer interface
– Surrogate board can be used while target board(s) being designed (custom) or purchased

(COTS)

Ports

Bus

Regs
FPGA

Function
Core

Memory
Interface

Container

Control

Ports

Bus

Regs
FPGA

Function
Core

Memory
Interface

Container

Control

Presenter
Presentation Notes
The RAPID methodology (Rapid Advanced Processor In Development) consists of 2 principal components: a collection of known-good-designs in a format that facilitates re-use, and a design flow that allows overlapping of board and firmware development activities.

The decoupling of board and firmware development necessitates the portability of the FPGA firmware. This is ensured by a highly portable “Container” infrastructure that allows the FPGA firmware to be developed and tested on surrogate boards and later ported to the targeted form factor. System form factor is, thus, highly customizable without up-front schedule cost.

MIT Lincoln Laboratory
HPEC2008-4

AJH-HTN 09/24/08

Goal:
Quick Development: 7-12 Months

Motivation

Reduce system development time in half

ROSA II
System

Computer

Back-end
Processor

Receiver Array
4 Channels
20 MHz BW

Airborne Radar System Demo

RAPID
Front-end

Signal Processor

Presenter
Presentation Notes
This slide shows the overview of the project RAPID, which the controller is developed for.

The goal of the project is to reduce system development time by ½ while offering flexibility in system form factors.

In this project, the methodology is developed and applied to a pilot case of ROSA-II system feasibility demo, with 1-year time frame.

ROSA-II is the Radar Open System Architecture that allows radar systems to be put together quickly using the a common infrastructure of software and hardware.

MIT Lincoln Laboratory
HPEC2008-5

AJH-HTN 09/24/08

Outline

• Introduction and Motivation
• Container Infrastructure

– Concept
– Implementation

• Example Application
• Summary

Presenter
Presentation Notes
This is the outline.

MIT Lincoln Laboratory
HPEC2008-6

AJH-HTN 09/24/08

FPGA Processing Application

Data

Processor

ADC

FPGAFPGA

DAC

• Control Processor
gains visibility into
FPGA via Controller
Core

• Controller Core
provides monitoring
and control of
memories and
functional blocks

– Set parameters,
load memory,
monitor status

Control
Processor

FPGAFPGA

Processor

FPGAFPGA

Data

• FPGA processes high-
speed streaming data
from various sources

• Control processor
initializes, monitors, and
configures FPGA

Block
1

Block
2

Block
3

Off-Chip MemoryOff-Chip Memory

Controller Core

Status

Container Infrastructure

Presenter
Presentation Notes
This top half of this slide shows a generalized FPGA processing application at a high level. The controller we describe in this presentation is intended to meet the control requirements of a generalized FPGA processing application, and we implemented a few cases of this generalized outline. Most of this presentation will focus on the interaction between the control processor and the FPGA, and will address components on both the control processor and the FPGA.

The bottom half of this slide zooms in on the FPGA box on the last slide (“FPGA Processing Application”). It shows in a general way how a Controller Core on the FPGA would interact with the control processor external to the FPGA and with various features of the FPGA design. The Controller Core is able to monitor and control the various on-FPGA data-processing blocks, as well as read and write off-chip memory that is connected to the FPGA. Additionally, it has some visibility into miscellaneous status of the FPGA processor, for example, the chip temperature.

MIT Lincoln Laboratory
HPEC2008-7

AJH-HTN 09/24/08

FPGA Container Infrastructure

• FPGA Function Core development can be accelerated with
infrastructure provided by Container: host computer interface, on-
chip registers, ports, and memory interface

• Real-time application or debug utility can access any address
(registers, ports, and memories) on the FPGA

• Message formatting and data transfer operations are supported
through Remote Direct Memory Access (RDMA) library

RDMA Library

Real-time
Application

Debug
Utility

Computer

C++ interface
GigE

FPGA Board

RAM

Controller

Ports

Bus

RegsFPGA

Function
Core

Interface

Container

Presenter
Presentation Notes
This slide describes a computer – FPGA interface for facilitating rapid FPGA development.

The software and firmware together allows a user to easily access the internal of the FPGA registers to monitor or control his application logic. This diagnostic capability is very valuable in debugging the FPGA logic, and especially helpful during system integration.

The user accesses the FPGA internal registers through memory map. The RDMA library on the computer and controller on the FPGA abstract away the low-level protocol and message handling.

MIT Lincoln Laboratory
HPEC2008-8

AJH-HTN 09/24/08

Outline

• Introduction and Motivation
• Container Infrastructure

– Concept
– Implementation

• Example Application
• Summary

Presenter
Presentation Notes
This is the outline.

MIT Lincoln Laboratory
HPEC2008-9

AJH-HTN 09/24/08

Motivation for Memory-Mapped Control

• Memory-Mapped Control Means
– Device control via simple reads/writes to specific addresses
– Processor and interconnect not specific to any device

 With proper software, processor can control any device
• Container Infrastructure extends concept to FPGA control

Data

Address
Interconnect

e.g. Processor Bus,
PCI, PCI-Express, SRIO

Graphics
Device

Graphics
Device

Ethernet
Device

Ethernet
DeviceGeneral

Processor

FPGAFPGA

Presenter
Presentation Notes
This is an introduction to the memory-mapped approach that we take in designing our general control system.

In memory-mapped control, each device gets an address space that is accessible from the general processor by read and write commands. Each controllable element of the device is at a known address within the assigned address space. Controllable elements include things like control and status registers and internal memories

The memory-mapped approach is frequently used for computer peripherals, and leads to simple and extensible system architectures which can support devices that weren’t planned for when the processor was designed. We use a “PC-style” architecture as an example here to explain memory-mapped control.

MIT Lincoln Laboratory
HPEC2008-10

AJH-HTN 09/24/08

Interconnect

• Interconnect Choices
– Ethernet, Serial RapidIO, PCI Express, etc.

• Platform-Specific Considerations
– MicroTCA has Gigabit Ethernet channel to all payload slots,

separate from higher-speed data channels

• Advantages of using Gigabit Ethernet
– Ubiquitous
– Wide industry support
– Easy to program

MicroTCA
Chassis H

U
B

FPGA Boards

Gigabit EthernetControl
Processor

“Fat Pipe”
data

channel

Presenter
Presentation Notes
This slide explains the decision to use Ethernet as the interconnect for the memory-mapped controller. The decision was based primarily on the ubiquity and availability of Ethernet, both in general and in the MicroTCA architecture used in this project.

MIT Lincoln Laboratory
HPEC2008-11

AJH-HTN 09/24/08

Memory-Mapped Control Protocol

• Stateless “request/response” protocol
• Reads and writes an address range (for accessing

memory) or a constant address (for accessing FIFO
ports)

• Presently implemented on top of UDP and Ethernet

magic version

command
address
length
flags

message tracking id

data (optional)

node number

Message
Format

0
4
8
12
16
20
24

28
…

Command Purpose

READ Request read data

WRITE Request write data

DATA Response to READ

ACK Response to WRITE

NACK Response to READ/WRITE
(command failed)

Presenter
Presentation Notes
This slide shows some of the details of the memory-mapped control protocol that is used by our system. The protocol is used by both the control processor (via software) and the FPGA (via an encoder-decoder core) and is designed to be easy to handle on an FPGA. Elements that make it easy to handle include (1) It is stateless – that is, each packet is independent, (2) the packet format is very simple and (3) it is presently implemented on top of UDP, which is itself a relatively simple protocol. The protocol is designed to handle lost or unacknowledged packets by retransmitting them.

At its core, the protocol has two commands, READ and WRITE, which allow the control processor to request a read or write of a range of addresses on the FPGA. Three responses are possible: a DATA response, which gives data in response to a READ. An ACK indicates that a WRITE was processed successfully. A NACK indicates that either a READ or a WRITE could not be handled successfully. An option exists to choose between reading or writing an incrementing range of addresses (appropriate for moving data to or from memories) or a constant address (appropriate for accessing a FIFO port).

MIT Lincoln Laboratory
HPEC2008-12

AJH-HTN 09/24/08

Memory-Mapped Control on FPGA

• Each device or core has an address within the FPGA
• Control processor refers to these addresses when reading

from or writing to the FPGA

Off-chip SDRAM

0x0

Mode
Status

Temperature

0x1000

0x2000
0x2004
0x2008

…

Example FPGA Address Space

Control
Processor

Read

Write

…

Presenter
Presentation Notes
Here we expand on the idea of memory-mapped control of devices on the FPGA. Devices on the FPGA – like an off-chip SDRAM controller and mode, status, and temperature registers. All of these devices are accessible to the control processor via reads and writes to their assigned addresses.

MIT Lincoln Laboratory
HPEC2008-13

AJH-HTN 09/24/08

RDMA Library

Real-time
Application

Debug
Utility

FPGA Board

RAM

Computer

Controller

Ports

Bus

RegsFPGA

Function
Core

Interface

Container

• Real-Time Application uses simple C++ methods to
communicate with FPGA

• C++ interface portable to other interconnects (SRIO, PCIe)

// Create an FPGA access object
FpgaUdpReadWrite fpga(“fpga-network-address”, FPGA_UDP_PORT);

// Send input data from myBuffer to the FPGA
fpga->write(FPGA_INPUT_DATA_ADDR, INPUT_DATA_LENGTH, myBuffer);

// Read back the output data
fpga->read(FPGA_OUTPUT_DATA_DDR, OUTPUT_DATA_LENGTH, myBuffer);

// Create an FPGA access object
FpgaUdpReadWrite fpga(“fpga-network-address”, FPGA_UDP_PORT);

// Send input data from myBuffer to the FPGA
fpga->write(FPGA_INPUT_DATA_ADDR, INPUT_DATA_LENGTH, myBuffer);

// Read back the output data
fpga->read(FPGA_OUTPUT_DATA_DDR, OUTPUT_DATA_LENGTH, myBuffer);

Real-Time Application Example

Presenter
Presentation Notes
This slide shows how a C++ library is used to do memory-mapped reads and writes to the FPGA. The library abstracts away the details of sending commands to the FPGA and interpreting the responses. In our implementation, calls to this library are implemented by sending control messages (via UDP) to the FPGA. However, this same library interface could be used with other underlying protocols with limited changes to the application that calls it.

MIT Lincoln Laboratory
HPEC2008-14

AJH-HTN 09/24/08

RDMA Library

Real-time
Application

Debug
Utility

FPGA Board

RAM

Computer

Controller

Ports

Bus

RegsFPGA

Function
Core

Interface

Container

• Command-line and scripting interface provides debug
access to FPGA container

• Function core can be tested before final software is written

Send input data to the FPGA
w 192.168.0.2 1001 0x0 sample_input_data.bin

One-second delay (in ms)
P 1000

Read back the output data
r 192.168.0.2 1234 0x10000000 0x8000 result_data.dat

Send input data to the FPGA
w 192.168.0.2 1001 0x0 sample_input_data.bin

One-second delay (in ms)
P 1000

Read back the output data
r 192.168.0.2 1234 0x10000000 0x8000 result_data.dat

Command-Line Example

Presenter
Presentation Notes
This slide shows how a command-line interface can be used to load data onto an FPGA, initiate processing of that data, and read back the output data and status. The command-line interface provides similar functionality to the previously mentioned C++ interface (and is implemented by calling the C++ interface). The advantage of this interface is that it allows you to debug without writing and compiling a C++ program. Commands can be entered one-by-one at the command line or put in a prepared script file, which is easier to modify than a C++ program. It is expected that developers would begin using the command-line directly, proceed to writing scripts as the FPGA processor is tested, and eventually create a custom C++ program that calls the library directly.

MIT Lincoln Laboratory
HPEC2008-15

AJH-HTN 09/24/08

Integrated Container System

Streaming DMA Controller

WISHBONE Interconnect
Wishbone Slaves

Wishbone Master

Register
File

Mode Status “Sticky”
Status

Port Array
Port 0 Port 1 ….. Port 2n-1

Ethernet
PHY

UDP
Protocol
Engine

Message
Encoder /
Decoder

Ethernet
MAC

Command Address Data …

Control
Message

WISHBONE /
Memory Bridge

Memory
Controller

Processing
Application

Message
Decoding

WISHBONE
Bus

Interface

Control
Peripherals

Lincoln Laboratory IP

Presenter
Presentation Notes
This slide shows an integrated view of all the major components of the on-FPGA control system. Control messages enter at the top via Ethernet, are decoded via several blocks into commands for the streaming DMA controller, uses the WISHBONE Bus Interface (middle) to access all of the devices (“Control Peripherals”) connected as slaves to the WISHBONE Interconnect. The integrated controller is broken down into three major sections, which are addressed individually in later slides.

MIT Lincoln Laboratory
HPEC2008-16

AJH-HTN 09/24/08

Message Decoding

• Inside the FPGA, the control message is decoded into a
memory-mapped read or write command

• Can mix and match components to implement different
protocols

PHY
(on-chip or

off-chip)

UDP
Protocol
Engine

Encoder /
Decoder

Xilinx
Embedded

TEMAC

Command Address Data …

GigE

Control
Message

Decoded Message

Presenter
Presentation Notes
This slide shows the Message Decoding section of the control infrastructure. Gigabit Ethernet is received by a PHY (which decodes the physical Ethernet signals), is passed to a MAC (which decodes Ethernet packets) to a UDP Protocol Engine (which decodes UDP/IP packets) and finally to a protocol Encoder / Decoder, which decodes our memory-mapped message protocol. The result is a decoded message, which is passed to the next stage of the control system. When a response comes from the control system, it takes the form of a decoded message packet, which takes the reverse path through this system and emerges as an Ethernet packet.

Our implementations use either on on-chip PHY from Xilinx or an off-chip PHY connected externally to the FPGA. The TEMAC (Tri-Mode Ethernet Media Access Controller) comes from Xilinx. The UDP Protocol Engine and the Encoder / Decoder are blocks developed by Lincoln Laboratory.

MIT Lincoln Laboratory
HPEC2008-17

AJH-HTN 09/24/08

WISHBONE Bus Interface

• Streaming DMA Controller (SDMAC) handles read/write commands
by generating WISHBONE bus cycles

• WISHBONE Interconnect routes transactions to destinations based
on memory map

• Transaction block sizes range from one word (four bytes) to 8k bytes

Command Address Data

Streaming DMA Controller

WISHBONE
Interconnect

WISHBONE
Slaves

WISHBONE
Master

= WISHBONE Bus Interface

Decoded Message
…

Presenter
Presentation Notes
This slide shows the “WISHBONE bus interface” section of the integrated control infrastructure. Here, decoded commands from the message processing section are passed to the Streaming DMA Controller, or “SDMAC.” The SDMAC processes these commands by generating master read or write cycles on the WISHBONE bus, one or more per command depending on the amount of data accessed by the command. These read or write cycles are routed by the WISHBONE Interconnect to the appropriate WISHBONE slave device.

The Streaming DMA Controller was developed by Lincoln Laboratory. The WISHBONE Interconnect is a modification of an interconnect generated by the WISHBONE Builder (a script available from OpenCores).

MIT Lincoln Laboratory
HPEC2008-18

AJH-HTN 09/24/08

WISHBONE Bus

• WISHBONE is a flexible, open-source
bus for system-on-chip designs

– Specifies a logical (not electrical)
interface between IP peripherals

– WISHBONE peripherals and
interconnect hubs are available on
the OpenCores web site

Diagrams and specification: http://www.opencores.org/

RST_I

CLK_I

ARD_O()

DAT_I()

DAT_O()

WE_O

SEL_O()

STB_O

ACK_I

CYC_O

TAGN_O

TAGN_I

W
is

hb
on

e
M

as
te

r

RST_I

CLK_I

ARD_I()

DAT_I()

DAT_O()

WE_I

SEL_I()

STB_I

ACK_O

CYC_I

TAGN_I

TAGN_O

W
ishbone Slave

User
Defined

SYSCON

IP Core
Master

IP Core
Master

IP Core
Slave

IP Core
Slave

IP Core
Slave

Crossbar Switch
Interconnect

Shared Bus Interconnect

Wishbone
Slave

IP Core

Wishbone
Slave

IP Core

Wishbone
Master
IP Core

Wishbone
Master
IP Core

FPGA

Presenter
Presentation Notes
This slide is an introduction to the WISHBONE bus, which is used as the on-FPGA interconnect architecture. WISHBONE is a standard for a memory-mapped, open-source bus that is used to connect devices on the same chip. In general, it connects one or more “master” devices (which generate read or write cycles) to one or more “slave” devices (which respond to read or write cycles). Each slave device responds to cycles within an assigned range of addresses. A variety of different interconnect devices and peripherals are available on the OpenCores web site.

MIT Lincoln Laboratory
HPEC2008-19

AJH-HTN 09/24/08

Control Peripherals:
Register File and Port Array

• Each register has an address
• Registers enable / disable

features, trigger processes,
report condition and events

• Multiple registers can be used
in any combination of types

• Port Array translates
memory-mapped WISHBONE
operations to data streams

• Useful for testing
computational blocks that
expect data to arrive in a
FIFO-like fashion

Register File

Mode Status “Sticky”
Status

Port Array
Port 0 Port 1 ….. Port 2n-1

FIFOs for streaming data

WISHBONE Slave Interface

Presenter
Presentation Notes
This slide covers the Register File and the Port Array, two WISHBONE-compatible peripherals developed at Lincoln Laboratory. The Register File provides a set of registers that are accessible from the WISHBONE bus. These registers provide general control input to FPGA blocks (via a “Mode” register) and monitoring of the status of FPGA blocks (via the “Status” and “Sticky Status” registers). Using our IP, a register file can be assembled with any number of these three register types.

The Port Array provides a set of FIFO ports which are accessible from the WISHBONE bus. Each port has an address, which can be written to or read from. Writing to the port inserts data into a FIFO; reading from a port reads data from a FIFO. The port array can be used for testing purposes to send data to and receive data from a processing core that expects data input to come as a FIFO-like stream and likewise produces output data in a FIFO-like stream.

MIT Lincoln Laboratory
HPEC2008-20

AJH-HTN 09/24/08

Control Peripherals:
DDR2 SDRAM Controller Interface

• High-speed processing application and lower-speed
WISHBONE interface share access to DDR2 memory

– Used to preload data into external memory for use by the
processing application or for debugging

• Xilinx memory controller interfaces to memory

Memory Bridge

Xilinx MIG
DDR2

Controller

DDR2
(single module

or SODIMM)

Processing
application

WISHBONE Slave
Interface

Presenter
Presentation Notes
This slide shows a WISHBONE slave that allows both the WISHBONE bus and a high-speed processing core to share access to off-chip DDR2 memory. This system uses a high-speed memory controller, the “Xilinx MIG DDR2 Controller,” which is available from Xilinx and controls the FPGA pins that are connected to the external memory. The controller provides an internal port on the FPGA which gives access to the memory. The Memory Bridge shown above, which was developed by Lincoln Laboratory, attaches to the memory controller via a downstream port. It then has two “upstream” ports. One upstream port uses the same interface as the downstream port and is intended to be connected to a processing core. Because the interface on this port is the same as that used by the memory controller, a processing core that was intended to connect directly to the memory controller can connect to this port without modification. The other “upstream” port is a WISHBONE slave interface, which, when connected to a WISHBONE interconnect, allows the external memory to be mapped into the WISHBONE address space. This is useful for pre-loading the memory needed by a processing core or for examining the results of a processing core that are stored in memory for debugging.

MIT Lincoln Laboratory
HPEC2008-21

AJH-HTN 09/24/08

Resource Usage on Virtex-5 SX95T

• Container infrastructure consumes 7-12% of Virtex-5 SX95T
depending on functionality used

• Resource usage is constant as FPGA size increases

Component LUTs FFs BRAM
Kbytes

Clock rate

Controller Core
Functions

3,172 3,853 83.25 125 MHz
(5.4%) (6.5%) (7.6%)

Register File 132 200 0 125 MHz
(0.2%) (0.3%) (0%)

Port Array 396 531 0 125 MHz
(0.7%) (0.9%) (0%)

DDR2 Bridge /
Memory Controller

2,309 2,275 31.5 125 MHz
200 MHz

(3.9%) (3.9%) (2.9%)

Total 6,009 6,859 114.75

(10.2%) (11.6%) (10.5%)

Presenter
Presentation Notes
This chart details the FPGA resources used by the various container components, both in absolute terms and as a percentage of the Virtex-5 SX95T that was used for testing. The components are broken out because not every design will use all of the components listed here. The container infrastructure in its various configurations consumes 7-12% of the FPGA resources on an SX95T. This resource usage is relatively constant, so on a bigger FPGA, a smaller percentage will be used.

MIT Lincoln Laboratory
HPEC2008-22

AJH-HTN 09/24/08

Outline

• Introduction and Motivation
• Container Infrastructure

– Concept
– Implementation

• Example Application
• Summary

Presenter
Presentation Notes
This is the outline.

MIT Lincoln Laboratory
HPEC2008-23

AJH-HTN 09/24/08

ADC
DIQ FIR ABF

Packet
FormingSample

Timing
Control

Packet
Forming

ROSA II Front-End RAPID Processor

ADC data

Processed data

RAPID Processor

Analog data

Timing signals

Control

• ROSA II
– Open architecture for putting a radar

system together quickly
– Interfaces and protocols are defined

for subsystems
• Front-end Processor

– Developed with RAPID process
– Performs Digital IQ, FIR, and Adaptive

Beamforming

ROSA II
System

Computer

Back-end
Processor

RAPID
Front-end

Signal Processor

Receiver Array
4 Channels
20 MHz BW

spanning over multiple boards

Data path

Presenter
Presentation Notes
The ROSA-II demo shows the feasibility of an open architecture for putting quickly together radar systems. The enhancements from ROSA-I to ROSA-II include airborne systems with higher pulse rate, new system messages that allow CPI-based operation , and publish-subscribe capability through thin communication layer.

The RAPID front-end processor is part of the demo. The processor performs analog to digital conversion, digital inphase-quadrature processing, low-pass filtering, adaptive beamforming for interference-nulling, and packetizing data for recorder and back-end programmable processor.

MIT Lincoln Laboratory
HPEC2008-24

AJH-HTN 09/24/08

GigE MicroTCA Hub

sFPDP

Control

AD1
AD2

sRIO MicoTCA switch

Data pathData path Data path

RAPID Front-End Processor System

Computer

Distribution Control Control

Analog

Timing

AD3
AD4 Analog

Timing
Data path

• Processor is mapped to a MicroTCA system
– Separate Control and Datapath on one Hub card
– GigE base channel 0 is used for system control (~1 Gb/sec)
– Serial RapidIO fat-pipe is used for datapath (~10 Gb/sec)

• Container Infrastructure allows access to each FPGA via Gigabit Ethernet
– High observability and controllability

Board1 Board2 Board3 Board4

Presenter
Presentation Notes
The RAPID front-end processor is implemented with microTCA platform hardware.

The system consists of two microTCA cards with ADs and FPGAs for DIQ-FIR processing, one card with FPGA for adaptive beamforming and digital transmission of processed data. Supporting components include a timing distribution card, a microTCA hub card, and a single-board computer that interfaces to ROSA-II system network.

Each FPGA in the system is accessible through the microTCA GigE port0 channel, and also connected to a high-speed datapath through the microTCA hub.

MIT Lincoln Laboratory
HPEC2008-25

AJH-HTN 09/24/08

sRIO

Development with FPGA Container Infrastructure

ABF FrameSynch

Weights

sFPDPDIQ-FIR FrameSynch

Header offHeader off

CPI sRIOsRIO

sRIO
SwitchHeader

GigE

• Container provides host computer access and on-chip
control structure

– Helps development of custom function cores
– Flexible script-based method for sending test data and

reading back response

• Facilitates system-level testing with multiple data-path
source and destination options

– Data-path source and destination set via mode registers
– Raw data from memory, FIFO ports, or stream input.

Processed result to memory, FIFO ports, or stream output

Analog
& Timing

GigE

Header

DDR2
ctrlControlDDR2

ctrl

Fifo ports

Registers
Fifo ports

FPGA

Fifo ports

Control Registers
Fifo ports

FPGA

Ports

Bus

Regs
FPGA

Function
Core

Memory
Interface

Container

Control

Presenter
Presentation Notes
The FPGA Development Container provides host computer access and on-chip control structure to help the development of the Function Cores. From the host computer, the user can use a flexible script-based method to send test data to the core and read back its response. The infrastructure also include register files and external memory controller.

Through mode registers, the user can choose different datapath sources to feed the function cores and direct the processed output to different destinations. This provides a very valuable debugging frame work for system integration, significantly reduces time for isolating bugs and run-time issues.

MIT Lincoln Laboratory
HPEC2008-26

AJH-HTN 09/24/08

System-Level Benefits

• Eases development of Function Cores
– Script interpreter on host computer allows easy sending of test data and

reading of results
– Incremental system integration tests with multiple data sources and output

destinations
– Estimated saving in system integration test: 2 months

• Enables development on surrogate system(s)
– Highly portable Container Infrastructure allows early development

– 2 month head start while waiting for COTS system (initial capability)
– 6-9 month head start with custom boards (full capability)

Full CapabilityInitial Capability

Xilinx ML506 Coredge RL20 RAPID Processor

Presenter
Presentation Notes
The Container is highly portable and adapted for 3 different FPGA boards.

The Container has provided many benefited the system-level development. The enhanced visibility and controllability of the Function Core(s) have made the development and testing process much more effective. System integration effort can be carried out at incremental steps, yielding an estimated saving of 2 months in schedule.

The Container also allows surrogate system(s) to be used while the targeted system is being purchased or designed. For initial capability demo using COTS cards, the Container allows a 2-month head start. For the full capability demo with custom boards, 6 months of overlapping development activities were observed.

MIT Lincoln Laboratory
HPEC2008-27

AJH-HTN 09/24/08

Summary

• Presented a Container Infrastructure for FPGA development
– Memory-mapped control protocol for accessing FPGA registers,

FIFO ports, and external DDR2 memory

• Container Infrastructure enables fast system development
– Helps development of FPGA function cores
– Facilitates incremental system integration
– Allows early FPGA development on surrogate boards

• Future work
– Extend framework to non-Gigabit-Ethernet channels
– Ensure high portability and interoperability with COTS boards
– Extend the container concept for high-speed data co-processing

Presenter
Presentation Notes
This is the summary.

MIT Lincoln Laboratory
HPEC2008-28

AJH-HTN 09/24/08

Acknowledgements

RAPID Team
• Ford Ennis
• Michael Eskowitz
• Albert Horst
• George Lambert
• Larry Retherford
• Michael Vai

UDP protocol engine
• Timothy Schiefelbein

Presenter
Presentation Notes
This slide lists others who have contributed to this work.

	An Ethernet-Accessible Control Infrastructure for Rapid FPGA Development
	Outline
	Rapid Advanced Processor In Development (RAPID)
	Motivation
	Outline
	FPGA Processing Application
	FPGA Container Infrastructure
	Outline
	Motivation for Memory-Mapped Control
	Interconnect
	Memory-Mapped Control Protocol
	Memory-Mapped Control on FPGA
	Real-Time Application Example
	Command-Line Example
	Integrated Container System
	Message Decoding
	WISHBONE Bus Interface
	WISHBONE Bus
	Control Peripherals:�Register File and Port Array
	Control Peripherals:�DDR2 SDRAM Controller Interface
	Resource Usage on Virtex-5 SX95T
	Outline
	ROSA II Front-End RAPID Processor
	RAPID Front-End Processor System
	Development with FPGA Container Infrastructure
	System-Level Benefits
	Summary
	Acknowledgements

