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Abstract
In this paper, we introduce GPU VSIPL1, an implementa-
tion of the Vector Signal Image Processing Library (VSIPL)
Core Lite profile developed for the graphics processing unit
(GPU). This implementation achieves a speedup of one to
two orders of magnitude over the reference implementation.
Because VSIPL is an open standard for high-performance
platform-independent applications, GPU VSIPL provides
an abstraction layer that leverages the GPU with no addi-
tional development costs.

Introduction
Commodity graphics processing units (GPUs) are highly
parallel programmable microprocessors. The current high
end GPUs achieve a peak performance of 500 GFLOP/s
in single precision. Previous methods of performing
general-purpose computation on GPUs required algorithm
implementations be cast as 3D graphics operations with
prohibitive limitations on programmable vertex and pixel
shader length, control flow, and arthmetic capabilities. In
2006, NVIDIA released the Compute Unified Device Ar-
chitecture (CUDA) [1] development platform for the GPU.
CUDA specifies extensions to the C programming language
for writing program “kernels” directly targeting GPUs.
This enhances the viability of GPUs as a general-purpose
computing solution by providing a straight-forward pro-
gramming model and language exposing the GPU’s many
parallel data paths. However, achieving high performance
requires careful consideration of the GPU architecture and
rigorous optimization efforts, the results of which are not
portable to other architectures. Consequently, a domain
specific library implemented for the GPU is desirable for
convenient application development.

The Vector Signal Image Processing Library (VSIPL)
[2] is a portable API for implementing high-performance
signal processing applications while retaining platform
independence. VSIPL supports memory abstractions for
utilizing coprocessors with disjoint memory spaces. A
signal processing application may structure input data in
a block, admit it once to VSIPL’s memory management,
perform computations on that data, and release only the
block containing the final result. Intermediate results are
not transferred between system and GPU memory avoiding
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unnecessary latencies and communications overhead. This
capability distinguishes VSIPL from other signal processing
libraries that permit random access to data.

GPU VSIPL is an implementation of the VSIPL Core Lite
profile [3] for the GPU. This implementation achieves high
performance by performing all processing on the GPU. By
requiring all data blocks be admitted to VSIPL before oper-
ations may be called on them, GPU VSIPL effectively hides
the disjoint memory spaces from client applications. New
and existing applications written with VSIPL may leverage
the performance of the GPU simply by linking with GPU
VSIPL.

VSIPL Core Lite Compliance
The VSIPL Core Lite profile is a subset of the VSIPL
specification and covers single-precision floating-point
blocks and vector views. VSIPL Core Lite specifies a
rich set of support functions for creating, modifying, and
destroying blocks and managing associated buffers on the
GPU and system memory. Element-wise mathematical
operations defined for real- and complex-valued vectors,
inner products, scalar operations on vectors, and extrema
searching are implemented. FIR filtering is defined with
respect to explicit optimization hints for minimizing exe-
cution time or memory utilization. An out-of-place Fast
Fourier Transform using the CUDA FFT library distributed
by NVIDIA is provided. Additionally, a histogram and
portable random number generator defined in [2] are
implemented.

The GPU VSIPL implementation is distributed as a static
library with C linkage. It was implemented with NVIDIA’s
CUDA 1.1 programming language and C++ compiled with
Visual Studio 2005. GPU VSIPL passes all compliance tests
of the VSIPL Test Suite [4].

Implementation for the GPU
Kernels were implemented in the CUDA programming lan-
guage as function templates with both datatype and oper-
ation as template parameters thereby avoiding redundancy
and minimizing the scope of optimization efforts. Opti-
mization techniques for the GPU focus on the following
elements: parallelism, memory access optimizations, and
loop and data flow optimziations. We will show how these
techniques undertaken during the implementation of GPU
VSIPL’s FIR filtering result in high utilization and perfor-
mance.



To maximize utilization of the GPU’s arithmetic units,
an algorithm must be partitioned into blocks and threads
with many active threads and few synchronization points.
Numerous concurrent threads permit active threads to per-
form computations while others wait for memory accesses
to complete. Reduction operations like dot product and
sumval require synchronization between blocks and must
be implemented with two kernels. The first kernel applies
the reduction operator to parts of the input vector by launch-
ing many blocks, while the second kernel, implemented
as a single block, applies the reduction operator to the
results from the first. These may be executed consecutively
without incurring additional PCI-Express bus latency via
CUDA streams in which kernels and their arguments are
serialized and dispatched in a single call.

GPU threads may issue 32-, 64-, and 128-bit reads and
writes in a single instruction. If these addresses are con-
secutive over consecutive threads, they are coalesced into a
single transaction thereby maximizing memory bandwidth.
Because the GPU does not have a large cache and shared
memory capacity is only 16 kB per multiprocessor, efficient
memory access patterns are essential to achieving high
performance. Algorithms benefit from implementing data
pipelines in shared memory with accesses structured to
avoid bank conflicts among threads.

The GPU is heavily pipelined and performs floating point
multiply and multiply-add with a latency of four cycles.
In contrast, integer multiplication requires sixteen cycles.
Computing addresses in global memory for every element
may require many more cycles than actually performing the
desired computation, and is avoided by choosing inexpen-
sive address calculations and structuring the algorithm such
that expensive calculations are invariant throughout a thread.
Moreover, loop invariants must be explicitly hoist to the
preamble of loops, as the CUDA compiler does not perform
this automatically. Unrolling loops explicitly and modify-
ing loop bodies to avoid loop-carried register dependencies
contribute additional performance.

Performance Results
To demonstrate the performance of GPU VSIPL, an
application was written to determine average runtime of
VSIPL functions. By linking the application with first
the TASP VSIPL CORE Plus [5] library and then the
GPU VSIPL library, performance results from each were
obtained. The test platform is an Intel Core2 Q6600 at
2.4 GHz running Windows XP Professional with 2 GB of
system memory. The GPU is an NVIDIA GeForce 8800
GTX with 768 MB of video memory.

GPU VSIPL demonstrated speedups for element-wise func-
tions ranging from 20x to over 350x faster than the reference
implementation depending on function and number of ar-
guments. Other functions also demonstrated high speedup.
Figure 1 illustrates GPU VSIPL’s time-domain FIR filtering
performance as filter length is varied from 16 elements to
256; the input vector length is 220 elements. GPU VSIPL’s
speedup remains approximately 82x for all filter lengths.

Figure 2 illustrates GPU VSIPL’s FFT performance for in-
put vectors of increasing size. Average speedup was 14.5x,
yet the peak speedup observed for vectors of size 220 and
larger was 28.5x.
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Figure 1: Time-domain FIR filtering runtime.
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Figure 2: FFT runtime.

Conclusion
GPU VSIPL was developed to utilize the high performance
available with modern GPUs and expose this performance
to application developers in a platform-independent manner.
The low price of GPUs and their high performance makes
them a desirable architecture for high-performance comput-
ing. VSIPL provides memory and computing abstractions
so that applications may perform high-level operations using
an implementation optimized for a particular architecture.
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