
Extending VForce to Include Support for NVIDIA GPUs using CUDA

Dennis Cuccaro, Nicholas Moore, Miriam Leeser
cuccaro.d@neu.edu, {nmoore, mel}@coe.neu.edu

Dept. of Electrical and Computer Engineering
Northeastern University, Boston, MA

Laurie Smith King

lking@holycross.edu
Dept. of Computer Science and Mathematics
College of the Holy Cross, Worcester, MA

VSIPL++ for Reconfigurable Computing (VForce) is a
middleware framework that adds support for special
purpose processors (SPPs) to VSIPL++ [1], a C++
extension of the Vector, Signal, and Image Processing
Library. VSIPL++ defines an object oriented API that
provides a collection of commonly used signal processing
algorithms and strives to enable performance, portability,
and productivity.
Current implementations of VSIPL++ mainly provide
support for software-only applications and do not take
advantage of the growing number of SPPs available,
including FPGAs and GPUs. For certain classes of
applications these types of SPPs can provide significant
performance improvements over general purpose CPUs.
Previous work has described in detail how VForce makes
SPP implementations of signal processing algorithms
seamlessly available to the VSIPL++ programmer in a
portable way, as well as two applications used to
characterize VForce [2, 3]. In this talk we will first
summarize the VForce Framework, and then focus on our
new work that extends VForce to support GPUs by making
use of NVIDIA's CUDA environment. Results will be
presented in the final abstract.

The VForce Framework

Figure 1: Conceptual Diagram of VForce

As shown in Figure 1, the VForce framework consists of
several components that act in concert to provide all of the
necessary hardware abstraction. In VSIPL++, the

programmer interacts with processing objects that realize
algorithms in software. VForce extends this model by
allowing the creation of processing objects that interact
with our Generic Hardware Object (GHO), which
represents an abstract SPP. The GHO provides the
processing object with a set of common SPP control
methods, including methods for data transfer and kernel
execution control, allowing the processing object to control
hardware through a portable interface.
The current implementation of VForce does not bind to a
specific piece of hardware and hardware API until runtime
– no SPP specific code is compiled into the user
application. At runtime, when the processing object
requests that the GHO load an algorithm, the GHO contacts
the Run Time Resource Manager (RTRM) through
interprocess communication (IPC) to ask for an SPP that
can execute the requested algorithm. The RTRM is a
system service, running separately from the user
application, that manages and allocates the SPP resources
available on a given machine. Once the RTRM receives a
request for hardware to execute a given algorithm, it
searches through its SPP kernel library for a device that has
a kernel matching the request. If a match is found, the
RTRM will program the device, if applicable, and send a
message over IPC to the requesting program indicating
which piece of hardware and which Dynamically Linked
Shared Library (DLSL) should be used to control the
hardware.
VForce DLSLs all have a common set of functions,
implementing a second interface that is lower-level than
that provided by the GHO to the user application. A DLSL
corresponding to a particular SPP uses the SPP-specific API
necessary to implement the needed functionality. Once the
GHO loads the correct DLSL, it uses this interface to
control the designated SPP.
The net effect of these components is to provide portability
and runtime adaptability. The user application and
processing objects are written and compiled without
knowledge of the target hardware and can be compiled and
run anywhere VSIPL++ can be – including machines
without SPPs or an RTRM – as VForce provides a
mechanism for transparently transitioning to a software
failsafe. The RTRM provides a hardware abstraction layer
and the DLSLs link the abstract SPP interface to a specific
SPP API.
In addition to portability, VForce emphasizes performance,
and although VForce uses a run time manager, the RTRM is
only involved during SPP request and relinquish. Once the
GHO in the user application has loaded the correct DLSL,
both control and data are direct between the user
application and the SPP. Throughout the framework efforts
have been made to minimize the overhead.

Finally, VForce is easily extensible, encourages code and
kernel reuse, and helps to separate areas of expertise. SPP
acceleration can be added to a new platform by providing a
DLSL (generally only one is needed per platform) and the
SPP kernels for algorithms to be accelerated. Processing
objects and kernels can be used in multiple applications.
The SPP kernels can be implemented by a domain expert or
through the use of high-level tools, while application
developers do not have to be as knowledgeable about low-
level machine specific details.

VForce Performance Characteristics
Previous work includes two applications, an FFT and a
beamforming application, built for and run on a Cray XD1
and a Mercury 6U VME system. The FFT application
demonstrated portability as the user application code was
identical. Overhead testing on the Cray XD1 revealed that
data copying was a source of overhead when VForce was
used to run the FFT on the XD1's FPGAs. The copying
arose from a need to move data from opaque VSIPL++
views into data buffers that matched the requirements
needed for DMA data transfer use. However, testing also
revealed that there was negligible overhead compared to a
pure VSIPL++ version of the FFT program when the
VForce program relied on the software failsafe FFT. This
was the case despite the extra VForce layers, including IPC
with the manager, implying that the overhead of the
framework was minimal when data copying is not
necessary. This, combined with an identified but yet to be
implemented mechanism for avoiding the data copy when
using hardware, promises that VForce should be able to add
minimal overhead when executing in software or hardware.
The beamforming application changed between the Cray
and Mercury platforms to take advantage of features added
to VForce after the Mercury version was completed. The
main new feature, concurrent execution and data transfers,
allowed the Cray XD1 beamformer to overlap software
execution on the CPU with multiple FPGA operations:
kernel execution, data transfer to the FPGA, and data
transfer from the FPGA. For many platforms, utilizing the
high level of concurrency enabled by VForce is necessary
to obtain the largest speedups offered by many new parallel
architectures.

Adding GPU Support to VForce
Our previous work had focused on platforms where the SPP
was an FPGA. In order to demonstrate the generality of
the approach taken by VForce for supporting SPPs, we have
recently implemented support for GPUs to VForce using
NVIDIA's CUDA environment. CUDA (Compute Unified
Device Architecture) is a development environment that
allows developers to write programs that can execute on a
NVIDIA GPU in C with a few extensions. CUDA includes
development tools and provides mechanisms for taking
advantage of the large amount of parallelism available on
recent GPUs.
Before an implementation was attempted, two models for
algorithm execution on GPUs were considered. The first
option was to treat GPUs similarly to the way VForce
interacts with FPGAs. A single executable binary, a cubin

file in the case of the CUDA tools, would be launched and
interacted with based on only the specified GHO functions,
forcing kernel developers to exactly match the single
execution pattern implemented in the DLSL. While this
method is straightforward and would result in relatively
simple DLSL, it does not take best advantage of the
characteristics of CUDA.
The second option was for the DLSL to provide a
mechanism to load pre-compiled units of more general code
written for the CUDA API. This option allows the
individual library elements to execute an arbitrary amount
of code that could take advantage of CUDA features like
streams, launching multiple kernels, and other CUDA
libraries like CUFFT and CUBLAS. This also allows
library element designers more flexibility to implement
algorithms by minimizing the constraints VForce places on
GPU kernel designs – a general goal of the VForce project.
While both mechanisms can be useful in different scenarios,
the second option was chosen for implementation due to its
greater flexibility, and an FFT library element was created
that uses the CUFFT library. The same VSIPL++ FFT test
program used on the Cray XD1 compiles and runs
unmodified on the target NVIDIA Tesla GPU hardware [4].
The first implementation of the CUDA DLSL does not
provide a mechanism for the FFT library element to
maintain state, requiring the creation and destruction of all
of the CUFFT library elements with each use of the FFT,
preventing the application from amortizing FFT setup
overhead over multiple runs and resulting in a constant time
of about 0.79 seconds per FFT iteration, which is slow. A
second version of the CUDA DLSL is currently being
debugged and will allow the library elements much more
flexibility, including the ability to maintain the CUFFT data
structures over multiple FFT iterations. Results from the
second implementation will be presented at the workshop.

Conclusions & Future Work
We have demonstrated that VForce supports portability
across several platforms and SPP types while introducing a
very small amount of overhead. In the future we will work
on improving the performance of the NVIDIA GPU support
as well as improving the performance and flexibility of
VForce. In addition, we plan to extend VForce to support
other platforms, including other GPUs and the STI Cell
processor, as well as to develop more demonstration
applications.

References
[1] http://hpec-si.org/
[2] N. Moore, A. Conti, M. Leeser and L. Smith King, “VForce:

An Extensible Framework for Reconfigurable
Supercomputing,” IEEE Computer, pp. 39-49. March 2007.

[3] N. Moore, A. Conti M. Leeser and L. Smith King, “Writing
Portable Applications that Dynamically Bind at Run Time to
Reconfigurable Hardware,” IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp.
229-238. April 2007.

[4] http://www.nvidia.com/object/tesla_computing_solutions.html

