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VSIPL++ for Reconfigurable Computing (VForce) is a 
middleware framework that adds support for special 
purpose processors (SPPs) to VSIPL++ [1], a C++ 
extension of the Vector, Signal, and Image Processing 
Library.  VSIPL++ defines an object oriented API that 
provides a collection of commonly used signal processing 
algorithms and strives to enable performance, portability, 
and productivity. 
Current implementations of VSIPL++ mainly provide 
support for software-only applications and do not take 
advantage of the growing number of SPPs available, 
including FPGAs and GPUs.  For certain classes of 
applications these types of SPPs can provide significant 
performance improvements over general purpose CPUs. 
Previous work has described in detail how VForce makes 
SPP implementations of signal processing algorithms 
seamlessly available to the VSIPL++ programmer in a 
portable way, as well as two applications used to 
characterize VForce [2, 3].  In this talk we will first 
summarize the VForce Framework, and then focus on our 
new work that extends VForce to support GPUs by making 
use of NVIDIA's CUDA environment.  Results will be 
presented in the final abstract.   

The VForce Framework 

 
Figure 1: Conceptual Diagram of VForce 

As shown in Figure 1, the VForce framework consists of 
several components that act in concert to provide all of the 
necessary hardware abstraction.  In VSIPL++, the 

programmer interacts with processing objects that realize 
algorithms in software.  VForce extends this model by 
allowing the creation of processing objects that interact 
with our Generic Hardware Object (GHO), which 
represents an abstract SPP.  The GHO provides the 
processing object with a set of common SPP control 
methods, including methods for data transfer and kernel 
execution control, allowing the processing object to control 
hardware through a portable interface. 
The current implementation of VForce does not bind to a 
specific piece of hardware and hardware API until runtime 
– no SPP specific code is compiled into the user 
application.  At runtime, when the processing object 
requests that the GHO load an algorithm, the GHO contacts 
the Run Time Resource Manager (RTRM) through 
interprocess communication (IPC) to ask for an SPP that 
can execute the requested algorithm.  The RTRM is a 
system service, running separately from the user 
application, that manages and allocates the SPP resources 
available on a given machine.  Once the RTRM receives a 
request for hardware to execute a given algorithm, it 
searches through its SPP kernel library for a device that has 
a kernel matching the request.  If a match is found, the 
RTRM will program the device, if applicable, and send a 
message over IPC to the requesting program indicating 
which piece of hardware and which Dynamically Linked 
Shared Library (DLSL) should be used to control the 
hardware. 
VForce DLSLs all have a common set of functions, 
implementing a second interface that is lower-level than 
that provided by the GHO to the user application.  A DLSL 
corresponding to a particular SPP uses the SPP-specific API 
necessary to implement the needed functionality.  Once the 
GHO loads the correct DLSL, it uses this interface to 
control the designated SPP. 
The net effect of these components is to provide portability 
and runtime adaptability.  The user application and 
processing objects are written and compiled without 
knowledge of the target hardware and can be compiled and 
run anywhere VSIPL++ can be – including machines 
without SPPs or an RTRM – as VForce provides a 
mechanism for transparently transitioning to a software 
failsafe.  The RTRM provides a hardware abstraction layer 
and the DLSLs link the abstract SPP interface to a specific 
SPP API. 
In addition to portability, VForce emphasizes performance, 
and although VForce uses a run time manager, the RTRM is 
only involved during SPP request and relinquish.  Once the 
GHO in the user application has loaded the correct DLSL, 
both control and data are direct between the user 
application and the SPP.  Throughout the framework efforts 
have been made to minimize the overhead. 



Finally, VForce is easily extensible, encourages code and 
kernel reuse, and helps to separate areas of expertise.  SPP 
acceleration can be added to a new platform by providing a 
DLSL (generally only one is needed per platform) and the 
SPP kernels for algorithms to be accelerated.  Processing 
objects and kernels can be used in multiple applications.  
The SPP kernels can be implemented by a domain expert or 
through the use of high-level tools, while application 
developers do not have to be as knowledgeable about low-
level machine specific details. 

VForce Performance Characteristics 
Previous work includes two applications, an FFT and a 
beamforming application, built for and run on a Cray XD1 
and a Mercury 6U VME system.  The FFT application 
demonstrated portability as the user application code was 
identical.  Overhead testing on the Cray XD1 revealed that 
data copying was a source of overhead when VForce was 
used to run the FFT on the XD1's FPGAs.  The copying 
arose from a need to move data from opaque VSIPL++ 
views into data buffers that matched the requirements 
needed for DMA data transfer use.  However, testing also 
revealed that there was negligible overhead compared to a 
pure VSIPL++ version of the FFT program when the 
VForce program relied on the software failsafe FFT.  This 
was the case despite the extra VForce layers, including IPC 
with the manager, implying that the overhead of the 
framework was minimal when data copying is not 
necessary.  This, combined with an identified but yet to be 
implemented mechanism for avoiding the data copy when 
using hardware, promises that VForce should be able to add 
minimal overhead when executing in software or hardware. 
The beamforming application changed between the Cray 
and Mercury platforms to take advantage of features added 
to VForce after the Mercury version was completed.  The 
main new feature, concurrent execution and data transfers, 
allowed the Cray XD1 beamformer to overlap software 
execution on the CPU with multiple FPGA operations: 
kernel execution, data transfer to the FPGA, and data 
transfer from the FPGA.  For many platforms, utilizing the 
high level of concurrency enabled by VForce is necessary 
to obtain the largest speedups offered by many new parallel 
architectures. 

Adding GPU Support to VForce 
Our previous work had focused on platforms where the SPP 
was an FPGA.  In order to demonstrate the generality  of 
the approach taken by VForce for supporting SPPs, we have 
recently implemented support for GPUs to VForce using 
NVIDIA's CUDA environment.  CUDA (Compute Unified 
Device Architecture) is a development environment that 
allows developers to write programs that can execute on a 
NVIDIA GPU in C with a few extensions. CUDA includes 
development tools and provides mechanisms for taking 
advantage of the large amount of parallelism available on 
recent GPUs. 
Before an implementation was attempted, two models for 
algorithm execution on GPUs were considered.  The first 
option was to treat GPUs similarly to the way VForce 
interacts with FPGAs.  A single executable binary, a cubin 

file in the case of the CUDA tools, would be launched and 
interacted with based on only the specified GHO functions, 
forcing kernel developers to exactly match the single 
execution pattern implemented in the DLSL.  While this 
method is straightforward and would result in relatively 
simple DLSL, it does not take best advantage of the 
characteristics of CUDA. 
The second option was for the DLSL to provide a 
mechanism to load pre-compiled units of more general code 
written for the CUDA API.  This option allows the 
individual library elements to execute an arbitrary amount 
of code that could take advantage of CUDA features like 
streams, launching multiple kernels, and other CUDA 
libraries like CUFFT and CUBLAS. This also allows 
library element designers more flexibility to implement 
algorithms by minimizing the constraints VForce places on 
GPU kernel designs – a general goal of the VForce project. 
While both mechanisms can be useful in different scenarios, 
the second option was chosen for implementation  due to its 
greater flexibility, and an FFT library element was created 
that uses the CUFFT library.  The same VSIPL++ FFT test 
program used on the Cray XD1 compiles and runs 
unmodified on the target NVIDIA Tesla GPU hardware [4]. 
The first implementation of the CUDA DLSL does not 
provide a mechanism for the FFT library element to 
maintain state, requiring the creation and destruction of all 
of the CUFFT library elements with each use of the FFT, 
preventing the application from amortizing FFT setup 
overhead over multiple runs and resulting in a constant time 
of about 0.79 seconds per FFT iteration, which is slow.  A 
second version of the CUDA DLSL is currently being 
debugged and will allow the library elements much more 
flexibility, including the ability to maintain the CUFFT data 
structures over multiple FFT iterations.  Results from the 
second implementation will be presented at the workshop.   

Conclusions & Future Work 
We have demonstrated that VForce supports portability 
across several platforms and SPP types while introducing a 
very  small amount of overhead.  In the future we will work 
on improving the performance of the NVIDIA GPU support 
as well as improving the performance and flexibility of 
VForce.  In addition, we plan to extend VForce to support 
other platforms, including other GPUs and the STI Cell 
processor, as well as to develop more demonstration 
applications. 
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