
Using GPUs to Enable Highly Reliable Embedded Storage
Matthew L. Curry, University of Alabama at Birmingham, curryml@cis.uab.edu

Anthony Skjellum, University of Alabama at Birmingham, tony@cis.uab.edu
H. Lee Ward, Sandia National Laboratories, lee@sandia.gov

Ron Brightwell, Sandia National Laboratories, rbbrigh@sandia.gov

Introduction
Embedded systems are often exposed to harsh
environments. Such conditions often result in increased
failure rates of the various hardware components in the
system, including storage devices. This lowered reliability
exposes a need for more highly reliable storage than current
RAID solutions can provide (while using a minimum of
hardware). Furthermore, it would be desirable to have a
tunable amount of reliability based on the anticipated
conditions and failure rates without sacrificing I/O
performance.

Current high-performance RAID solutions are limited in the
amount of parity that can be created from a single set of
data blocks. These RAID solutions are typically ASIC
technologies that are created to support efficient
implementations of standard RAID levels [1], supporting up
to two parity blocks per stripe of data. While more reliable
RAID levels have been invented [2], these are not tunable
technologies.

Reed-Solomon coding is a widely used optimal erasure
coding algorithm which can be used to provide an arbitrary
amount of parity information [3]. However, it is not well-
suited to most CPU architectures, resulting in low
performance in practice. Accelerating Reed-Solomon
coding is an important step in creating a high-performance
storage system supporting high reliablity.

Approach
The primary reason that CPUs suffer from lower
performance in Reed-Solomon coding is the lack of parallel
table lookup functionality. We have identified graphics
processing units (GPUs) as supporting this feature, along
with very wide vector functionality for performing the
necessary arithmetic for parity generation. We have
implemented a parity generation component of a RAID-
like system which utilizes a CUDA-enabled GPU from
NVIDIA.

This component could be integrated into a RAID-like
system via pipelining of read and write requests, with three
stages: A user-buffer stage, which serves as a buffer
containing the user data before a write or after a read; a
parity generation stage, where data is transferred back and
forth between main memory and the GPU memory for
parity generation or data regeneration; and a disk stage,
which interfaces directly with the disks of the array. The
throughput of such a system would be limited by the
slowest component, so a goal of the system would be to
have useful configurations where the GPU stage is faster
than the disk stage for most read and write sizes.

Experimental Results
One system tested was a parity generator for a 3+3 system
of disks; that is, three blocks in a RAID stripe are dedicated
to holding data, while the remaining three are dedicated to
holding parity information. This configuration would allow
up to half of the disks to fail without incurring any data
loss. This system was benchmarked against a similar CPU
system for calculating parity in the same
manner.

Figure 1: CPU vs. GPU Performance

Figure 1 shows the tests as performed. The first test
utilized the CPU (Opteron 246) for doing all work. The
next test measured the full time required for contents of
main memory to be checksummed with a GPU (GeForce
8800GTX), including the transfer to and from the graphics
card over the PCI Express 1.1 buss. The final test
discounted this transfer cost, allowing a view into many
scenarios: For example, the GPU can someday have direct
access to a fast main memory, or transfer latencies can be
hidden via asynchronous DMA to the graphics card as part
of the pipeline.

These results are clear: The GPU has a tenfold
performance advantage for large writes when using PCI-
Express transfers. If the cost of these transfers were to be
hidden or eliminated, a 30-fold performance increase can be
obtained.

Another experiment performed compares the GPU
checksum component to the speed of disks for same-sized
writes. As mentioned previously, a goal is to have the GPU
portion of the pipeline be slower than the disk stage,
ensuring throughput is maintained for a steady stream of
writes. This experiment’s timings include the transfer cost
over the PCI Express bus. The experiment compares the
time for generating the checksums with the time required to
write the data and its checksum information to disks
(10,000 RPM Western Digital Raptors).

Figure 2: CPU vs. GPU Performance

The results, shown in Figure 2, show the results. The GPU
outperforms the disks by a factor of two for very large
writes, and is slower than the disk set only for small write
sizes for streaming writes to the disk array.

Conclusion
For modestly-sized arrays that need high reliability, which
can be found in an embedded environment, GPUs have
shown themselves to be both faster than CPUs and the disks
which they utilize. This is due to the unique memory
architecture and highly parallel design. While this alone is
sufficient, there are other conclusions to draw from this
work.

RAID solutions, due to their design, are usually only
applicable to the problem of managing disks. Embedded
systems often see a need to reduce the number of
components in the system in order to increase the overall
mean time to failure of the system. Using GPUs for parity
information allows for the reuse of a component in the
system if the I/O workload is sporadic; when not
performing checksum tasks, the GPU can be used for
performing other tasks. Using a GPU in this context
increases the performance of a system without necessarily
increasing the number of components in the system, as
GPUs are already being used in embedded systems.

References
[1] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.

Patterson, “RAID: High-performance, reliable secondary
storage,” ACM Computing Surveys, 26(2): 145-185, 1994.

[2] Accusys, “Accusys demonstrates triple parity RAID
technology on the New Generation of SATA II RAID
controllers at Computex Show,” 2005.

[3] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the Society for Industrial and
Applied Mathematics, 8(2):300-304, 1960.

