
Sherman Braganza
Prof. Miriam Leeser

ReConfigurable Laboratory
Northeastern University

Boston, MA

Outline
Introduction

Motivation
Optical Quadrature Microscopy
Phase unwrapping

Algorithms
Minimum LP norm phase unwrapping

Platforms
Reconfigurable Hardware and Graphics Processors

Implementation
FPGA and GPU specifics
Verification details

Results
Performance
Power
Cost

Conclusions and Future Work

Motivation – Why Bother With
 Phase Unwrapping?

Used in phase based imaging
applications

IFSAR, OQM microscopy
High quality results are
computationally expensive

Only difficult in 2D or higher
Integrating gradients with noisy
data
Residues and path
dependency

Wrapped embryo image

0.1

0.3

‐0.1

‐0.3

0.1

0.3

‐0.1

‐0.2

No residues Residues

Algorithms – Which One Do We
 Choose?

Many phase unwrapping algorithms
Goldstein’s, Flynns, Quality maps, Mask Cuts, multi-grid, PCG,
Minimum LP norm (Ghiglia and Pritt, “Two Dimensional Phase
Unwrapping”, Wiley, NY, 1998.

We need: High quality (performance is secondary)
Abilitity to handle noisy data

Choose Minimum LP Norm algorithm: Has the highest computational
cost

a) Software embryo unwrap
Using matlab ‘unwrap’

b) Software embryo unwrap
Using Minimum LP Norm

Breaking Down Minimum LP Norm
Minimizes existence of differences between
measured data and calculated data
Iterates Preconditioned Conjugate Gradient (PCG)

94% of total computation time
Also iterative
Two steps to PCG

Preconditioner (2D DCT, Poisson calculation and 2D IDCT)
Conjugate Gradient

Platforms – Which Accelerator Is Best
 For Phase Unwrapping?

FPGAs
Fine grained control
Highly parallel
Limited program memory

Floating point?
High implementation cost

Xilinx Virtex II Pro architecture
http://www.xilinx.com/

Platforms ‐

GPUs

G80 Architecture [nvidia.com/cuda]

Platform Comparison
FPGAs GPUs

•Absolute control: Can specific custom
bit-widths/architectures to optimally
suit application

•Need to fit application to
architecture

•Can have fast processor-processor
communication

•Multiprocessor-multiprocessor
communication is slow

•Low clock frequency •Higher frequency

•High degree of implementation
freedom => higher implementation
effort. VHDL.

•Relatively straightforward to
develop for. Uses standard C syntax

•Small program space. High
reprogramming time

•Relatively large program space.
Low reprogramming time.

Platform Description

Software unwrap execution time

Platform specifications

• FPGA and GPU on
different platforms 4
years apart
• Effects of Moore’s
Law

• Machine 3 in the
Results: Cost section
has a Virtex 5 and
two Core2Quads

Implementation: Preconditioning
 On An FPGA

Need to account for bitwidth
Minimum of 28 bit needed – Use 24 bit + block exponent

Implement a 2D 1024x512 DCT/IDCT using 1D row/column
decomposition
Implement a streaming floating point kernel to solve discretized
Poisson equation

27 bit software unwrap 28 bit software unwrap

Minimum LP Norm On A GPU
NVIDIA provides 2D FFT kernel

Use to compute 2D DCT
Can use CUDA to implement floating point solver

Few accuracy issues
No area constraints on GPU

Why not implement whole algorithm?
Multiple kernels, each computing one CG or LP

norm step
One host to accelerator transfer per unwrap

Verifying Our Implementations
Look at residue counts as algorithm progresses

Less than 0.1% difference
Visual inspection: Glass bead gives worst case results

Software unwrap GPU unwrap FPGA unwrap

Verifying Our Implementations
Differences between software and accelerated
version

GPU vs. Software FPGA vs. Software

Results: FPGA
Implemented preconditioner in hardware and measured algorithm
speedup
Maximum speedup assuming zero preconditioning calculation time :
3.9x

We get 2.35x on a V2P70, 3.69x on a V5 (projected)

Results: GPU
Implemented entire LP norm kernel on GPU and
measured algorithm speedup
Speedups for all sections except disk IO
5.24x algorithm speedup. 6.86x without disk IO

Results: FPGAs

vs. GPUs

Preconditioning only
Similar platform generation. Projected FPGA results.
Includes FPGA data transfer, not GPU

Buses? Currently use PCI-X for FPGA, PCI-E for GPU

Results: Power
GPU power consumption increases significantly
FPGA power decreases

Power consumption (W)

Cost
Machine 3
includes an
AlphaData board
with a Xilinx
Virtex 5 FPGA
platform and two
Core2Quads
Performance is
given by 1/Texec

Proportional to
FLOPs

Machine 2 $2200
Machine 3 $10000

Performance To Watt‐Dollars
• Metric to include all parameters

Conclusions And Future Work
For phase unwrapping GPUs provide higher performance

Higher power consumption
FPGAs have low power consumption

High reprogramming time
OQM: GPUs are the best fit. Cost effective and faster:

Images already on processor
FPGAs have a much stronger appeal in the embedded domain

Future Work
Experiment with new GPUs (GTX 280) and platforms (Cell,
Larrabee, 4x2 multicore)
Multi-FPGA implementation

Thank You!

Any Questions?

Sherman Braganza (braganza.s@neu.edu)
Miriam Leeser (mel@coe.neu.edu)

Northeastern University ReConfigurable Laboratory
http://www.ece.neu.edu/groups/rcl

mailto:braganza.s@neu.edu

	Slide Number 1
	Outline
	Motivation – Why Bother With Phase Unwrapping?
	Algorithms – Which One Do We Choose?
	Breaking Down Minimum LP Norm
	Platforms – Which Accelerator Is Best For Phase Unwrapping?
	Platforms - GPUs
	Platform Comparison
	Platform Description
	Implementation: Preconditioning On An FPGA
	Minimum LP Norm On A GPU
	Verifying Our Implementations
	Verifying Our Implementations
	Results: FPGA
	Results: GPU
	Results: FPGAs vs. GPUs
	Results: Power
	Cost
	Performance To Watt-Dollars
	Conclusions And Future Work
	Thank You!

