
Extending VForce to Include Support for
NVIDIA GPUs using CUDA

Dennis Cuccaro, Nicholas Moore, Miriam Leeser
Department of Electrical and Computer Engineering

Northeastern University, Boston, MA

Laurie Smith King
Department of Math & Computer Science
College of the Holy Cross, Worcester, MA

24 September 2008 2

Outline
VForce Review

What is VForce?
Past Applications & Platforms

Extending VForce to GPUs
Support for Nvidia CUDA
FFT Demonstration Application

Future Work

24 September 2008 3

Motivation 1
A lot of new architectures

Many use “non-traditional” processor accelerators attached as
co-processors
 FPGAs, GPUs, and Cell SPEs

For certain applications these accelerators offer a lot of
potential performance improvements
Fine grained parallelism within accelerator
Coarser grained parallelism between processing elements

24 September 2008 4

Motivation 2
Drawbacks for adopting new architectures:

New architectures hard to use
 Require specialized hardware knowledge
 Vendor specific toolchains

Code is not portable
 Vendor specific code mixed with application code

Short hardware shelf life

Want tools to help deal with these challenges
Maintain performance
Reuse algorithm kernels
Maintain productivity

24 September 2008 5

VSIPL++

C++ version of the Vector Signal Image Processing
Library

Open-standard API specification produced by High
Performance Embedded Computing Software Initiative
(HPEC-SI, www.hpec-si.org)

Provides an object oriented interface to a library of
common signal processing functions
Data classes specify storage, access, and distribution
Processing classes operate on data classes

Particular implementation is responsible for
performance on a given platform

24 September 2008 6

VForce Overview 1
VForce (VSIPL++ for Reconfigurable Computing
Environments) is middleware for mapping VSIPL++
functions to special purpose processors (SPPs)

Maintains VSIPL++ environment
Application programmer does not deal with accelerators

Maintains VSIPL++ portability
No hardware specific code in compiled application
Applications do not need accelerators to run
Built on top of VSIPL++ API – implementation independent

Compile Time and Runtime Components
Runtime binding to hardware

Library based: use preexisting SPP kernels

24 September 2008 7

VForce Overview 2
Create new “processing

objects” for acceleration
Function offload a decent

match for accelerators
 Granularity issues

Each processing object needs two implementations
Accelerated version
Software-only failsafe

The accelerated version uses the generic processing
element (GPE) to control

Whenever there are no accelerators or an error default
to software – no user programmer interaction

24 September 2008 8

Generic Processing Element

The Generic Processing Element (GPE) exposes
a generic set of accelerator operations
Kernel execution control
Data transfers

Supports non-blocking operations
GPE contains no accelerator specific code –

loaded at runtime
GPE uses two internal VForce interfaces

Request/surrender accelerator hardware
Accelerator control interface

24 September 2008 9

VForce Framework
GPE could bind to

platform specific
interfaces directly

Currently gets hardware
from system-wide
Runtime Resource
Manager (RTRM) via IPC

RTRM manages HW and makes accelerator allocation
decisions – completes abstraction

Opportunity for runtime services – not explored
Current implementation is first-come, first-served
Generic like GPE – runtime binding

24 September 2008 10

VForce Interaction 1
During execution

processing object tries to
initialize a SPP

GPE requests a SPP from
RTRM via interprocess
communication (IPC)

Manager determines if
there is an algorithm/SPP
match
Optionally programs device

with kernel

Replies to GPE via IPC

24 September 2008 11

VForce Interaction 2
During execution

processing object tries to
initialize a SPP

GPE requests a SPP from
RTRM via interprocess
communication (IPC)

Manager determines if
there is an algorithm/SPP
match
Optionally programs device

with kernel

Replies to GPE via IPC

24 September 2008 12

VForce Interaction 3
Hardware Available?

No: transfer to software
implementation

Yes
 Load the indicated SPP

control library
 Continue with the

hardware/software
implementation

During execution
communication and
control direct – RTRM not
involved

24 September 2008 13

Previous VForce Work
We previously presented work on several FPGA-based

platforms
Vforce: Aiding the Productivity and Portability in

Reconfigurable Supercomputer Applications via Runtime
Hardware Binding, HPEC 2007

VFORCE: VSIPL++ for Reconfigurable Computing
Environments, HPEC 2006

Early work on Annapolis WildCard II PCMCIA card
Support for Cray XD1 and Mercury 6U VME systems

All Mercury development done by Albert Conti
(NU MS 12/2006, Mitre)

FFT and time domain beamformer implemented for Cray and
Mercury machines

24 September 2008 14

VSIPL++ FFT Replacement
Drop in replacement for VSIPL++ FFT
FFT suffers from granularity issues for 1:1 function

offload
Including data transfers always slower on Cray XD1

Was used to look at VForce overheads
VForce software failsafe vs. VSIPL++

 Included RTRM communication
 Virtually no impact on performance

VForce hardware vs. Native C
 Data copying from opaque views to DMA-able memory hurt

performance (Future Work)

24 September 2008 15

Beamformer

Example large-
granularity VForce
function

VForce supports
asynchronous kernel
control and data transfer
Important for getting max

system performance
Used by XD1 beamformer to achieve additional speedup

Weight Application on FPGA concurrent with Weight
Computation on CPU

24 September 2008 16

Nvida Tesla and CUDA

CUDA
General purpose development environment for Nvidia GPUs
Uses C-language extensions to express parallelism
Includes a toolchain (compiler, debugger, profiler), driver API,

and libraries (CUFFT & CUBLAS)

http://www.nvidia.com/object/tesla_c870.html

Tesla C870 GPU Board
Unified Shader Architecture
Higher ratio of transistors

dedicated to arithmetic vs
CPU

Massively parallel

24 September 2008 17

Extending VForce to GPUs

Similarities to FPGAs
Data transfer to off-die accelerator
Pre-compiled kernels

Differences in kernel execution
GPU kernels can be more flexible at runtime
Relatively small overhead for loading kernels vs FPGA

 Allows executing multiple kernels & mixing and matching

Differences in development
Tools still hardware specific
Fixed hardware, thousands of threads

24 September 2008 18

VForce CUDA Support
On FPGA platforms one SPP control library loads

various FPGA bitstreams and handles all SPP control
interface functionality

RTRM search returns algorithm-specific control library
CUDA allows low-level bitstream-like functionality but not used
Higher-level method allows multiple kernels to be called if

desired and the use of CUFFT and CUBLAS

VForce tries to impose few HW requirements

24 September 2008 19

FFT Results
CUDA FFT uses CUDA

libraries
CUFFT for FFT
CUBLAS for scaling

Current results affected by
data copying like XD1

CodeSourcery VSIPL++
using FFTW on Intel Xeon
5110 (1.6 GHz dual core, 4
MB cache)

Same exact application
code as Cray XD1 FPGA
FFT

24 September 2008 20

Conclusions & Future Work

User application code compiles unmodified
between FPGA, GPU, and software only
architectures

Need more control over memory
Support of new platforms: looking at Cell
New applications

24 September 2008 21

Thank You

Thanks to:
HPEC-SI

The MathWorks

Contact:
mel@coe.neu.edu

Website:
 http://www.ece.neu.edu/groups/rcl/projects/vsipl/vsipl.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

