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Motivation 1
A lot of new architectures

Many use “non-traditional” processor accelerators attached as 
co-processors
 FPGAs, GPUs, and Cell SPEs

For certain applications these accelerators offer a lot of 
potential performance improvements
Fine grained parallelism within accelerator
Coarser grained parallelism between processing elements
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Motivation 2
Drawbacks for adopting new architectures:

New architectures hard to use
 Require specialized hardware knowledge
 Vendor specific toolchains

Code is not portable
 Vendor specific code mixed with application code

Short hardware shelf life

Want tools to help deal with these challenges
Maintain performance
Reuse algorithm kernels
Maintain productivity
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VSIPL++

C++ version of the Vector Signal Image Processing 
Library

Open-standard API specification produced by High 
Performance Embedded Computing Software Initiative 
(HPEC-SI, www.hpec-si.org)

Provides an object oriented interface to a library of 
common signal processing functions
Data classes specify storage, access, and distribution
Processing classes operate on data classes

Particular implementation is responsible for 
performance on a given platform
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VForce Overview 1
VForce (VSIPL++ for Reconfigurable Computing 
Environments) is middleware for mapping VSIPL++ 
functions to special purpose processors (SPPs)

Maintains VSIPL++ environment
Application programmer does not deal with accelerators

Maintains VSIPL++ portability
No hardware specific code in compiled application
Applications do not need accelerators to run
Built on top of VSIPL++ API – implementation independent

Compile Time and Runtime Components
Runtime binding to hardware

Library based: use preexisting SPP kernels
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VForce Overview 2
Create new “processing 

objects” for acceleration
Function offload a decent 

match for accelerators
 Granularity issues

Each processing object needs two implementations
Accelerated version
Software-only failsafe

The accelerated version uses the generic processing 
element (GPE) to control

Whenever there are no accelerators or an error default 
to software – no user programmer interaction
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Generic Processing Element 

The Generic Processing Element (GPE) exposes 
a generic set of accelerator operations
Kernel execution control
Data transfers

Supports non-blocking operations
GPE contains no accelerator specific code – 

loaded at runtime
GPE uses two internal VForce interfaces

Request/surrender accelerator hardware
Accelerator control interface
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VForce Framework
GPE could bind to 

platform specific 
interfaces directly

Currently gets hardware 
from system-wide 
Runtime Resource 
Manager (RTRM) via IPC

RTRM manages HW and makes accelerator allocation 
decisions – completes abstraction

Opportunity for runtime services – not explored
Current implementation is first-come, first-served
Generic like GPE – runtime binding
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VForce Interaction 1
During execution 

processing object tries to 
initialize a SPP

GPE requests a SPP from 
RTRM via interprocess 
communication (IPC)

Manager determines if 
there is an algorithm/SPP 
match
Optionally programs device 

with kernel

Replies to GPE via IPC
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VForce Interaction 3
Hardware Available?

No: transfer to software 
implementation

Yes
 Load the indicated SPP 

control library
 Continue with the 

hardware/software 
implementation

During execution 
communication and 
control direct – RTRM not 
involved
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Previous VForce Work
We previously presented work on several FPGA-based 

platforms
Vforce: Aiding the Productivity and Portability in 

Reconfigurable Supercomputer Applications via Runtime 
Hardware Binding, HPEC 2007

VFORCE: VSIPL++ for Reconfigurable Computing 
Environments, HPEC 2006

Early work on Annapolis WildCard II PCMCIA card
Support for Cray XD1 and Mercury 6U VME systems

All Mercury development done by Albert Conti
(NU MS 12/2006, Mitre)

FFT and time domain beamformer implemented for Cray and 
Mercury machines
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VSIPL++ FFT Replacement
Drop in replacement for VSIPL++ FFT
FFT suffers from granularity issues for 1:1 function 

offload
Including data transfers always slower on Cray XD1

Was used to look at VForce overheads
VForce software failsafe vs. VSIPL++

 Included RTRM communication
 Virtually no impact on performance

VForce hardware vs. Native C
 Data copying from opaque views to DMA-able memory hurt 

performance (Future Work)
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Beamformer

Example large-
granularity VForce 
function

VForce supports 
asynchronous kernel 
control and data transfer
Important for getting max 

system performance
Used by XD1 beamformer to achieve additional speedup

Weight Application on FPGA concurrent with Weight 
Computation on CPU
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Nvida Tesla and CUDA

CUDA
General purpose development environment for Nvidia GPUs
Uses C-language extensions to express parallelism
Includes a toolchain (compiler, debugger, profiler), driver API, 

and libraries (CUFFT & CUBLAS)

http://www.nvidia.com/object/tesla_c870.html

Tesla C870 GPU Board
Unified Shader Architecture
Higher ratio of transistors 

dedicated to arithmetic vs  
CPU

Massively parallel
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Extending VForce to GPUs

Similarities to FPGAs
Data transfer to off-die accelerator
Pre-compiled kernels

Differences in kernel execution
GPU kernels can be more flexible at runtime
Relatively small overhead for loading kernels vs FPGA

 Allows executing multiple kernels & mixing and matching

Differences in development
Tools still hardware specific
Fixed hardware, thousands of threads
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VForce CUDA Support
On FPGA platforms one SPP control library loads 

various FPGA bitstreams and handles all SPP control 
interface functionality

RTRM search returns algorithm-specific control library
CUDA allows low-level bitstream-like functionality but not used
Higher-level method allows multiple kernels to be called if 

desired and the use of CUFFT and CUBLAS

VForce tries to impose few HW requirements
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FFT Results
CUDA FFT uses CUDA 

libraries
CUFFT for FFT
CUBLAS for scaling

Current results affected by 
data copying like XD1

CodeSourcery VSIPL++ 
using FFTW on Intel Xeon 
5110 (1.6 GHz dual core, 4 
MB cache)

Same exact application 
code as Cray XD1 FPGA 
FFT
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Conclusions & Future Work

User application code compiles unmodified 
between FPGA, GPU, and software only 
architectures

Need more control over memory
Support of new platforms: looking at Cell
New applications
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Thank You

Thanks to:
HPEC-SI

The MathWorks

Contact:
mel@coe.neu.edu

Website:
 http://www.ece.neu.edu/groups/rcl/projects/vsipl/vsipl.html
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