
Extending VForce to Include Support for
NVIDIA GPUs using CUDA

Dennis Cuccaro, Nicholas Moore, Miriam Leeser
Department of Electrical and Computer Engineering

Northeastern University, Boston, MA

Laurie Smith King
Department of Math & Computer Science
College of the Holy Cross, Worcester, MA

24 September 2008 2

Outline
VForce Review

What is VForce?
Past Applications & Platforms

Extending VForce to GPUs
Support for Nvidia CUDA
FFT Demonstration Application

Future Work

24 September 2008 3

Motivation 1
A lot of new architectures

Many use “non-traditional” processor accelerators attached as
co-processors
 FPGAs, GPUs, and Cell SPEs

For certain applications these accelerators offer a lot of
potential performance improvements
Fine grained parallelism within accelerator
Coarser grained parallelism between processing elements

24 September 2008 4

Motivation 2
Drawbacks for adopting new architectures:

New architectures hard to use
 Require specialized hardware knowledge
 Vendor specific toolchains

Code is not portable
 Vendor specific code mixed with application code

Short hardware shelf life

Want tools to help deal with these challenges
Maintain performance
Reuse algorithm kernels
Maintain productivity

24 September 2008 5

VSIPL++

C++ version of the Vector Signal Image Processing
Library

Open-standard API specification produced by High
Performance Embedded Computing Software Initiative
(HPEC-SI, www.hpec-si.org)

Provides an object oriented interface to a library of
common signal processing functions
Data classes specify storage, access, and distribution
Processing classes operate on data classes

Particular implementation is responsible for
performance on a given platform

24 September 2008 6

VForce Overview 1
VForce (VSIPL++ for Reconfigurable Computing
Environments) is middleware for mapping VSIPL++
functions to special purpose processors (SPPs)

Maintains VSIPL++ environment
Application programmer does not deal with accelerators

Maintains VSIPL++ portability
No hardware specific code in compiled application
Applications do not need accelerators to run
Built on top of VSIPL++ API – implementation independent

Compile Time and Runtime Components
Runtime binding to hardware

Library based: use preexisting SPP kernels

24 September 2008 7

VForce Overview 2
Create new “processing

objects” for acceleration
Function offload a decent

match for accelerators
 Granularity issues

Each processing object needs two implementations
Accelerated version
Software-only failsafe

The accelerated version uses the generic processing
element (GPE) to control

Whenever there are no accelerators or an error default
to software – no user programmer interaction

24 September 2008 8

Generic Processing Element

The Generic Processing Element (GPE) exposes
a generic set of accelerator operations
Kernel execution control
Data transfers

Supports non-blocking operations
GPE contains no accelerator specific code –

loaded at runtime
GPE uses two internal VForce interfaces

Request/surrender accelerator hardware
Accelerator control interface

24 September 2008 9

VForce Framework
GPE could bind to

platform specific
interfaces directly

Currently gets hardware
from system-wide
Runtime Resource
Manager (RTRM) via IPC

RTRM manages HW and makes accelerator allocation
decisions – completes abstraction

Opportunity for runtime services – not explored
Current implementation is first-come, first-served
Generic like GPE – runtime binding

24 September 2008 10

VForce Interaction 1
During execution

processing object tries to
initialize a SPP

GPE requests a SPP from
RTRM via interprocess
communication (IPC)

Manager determines if
there is an algorithm/SPP
match
Optionally programs device

with kernel

Replies to GPE via IPC

24 September 2008 11

VForce Interaction 2
During execution

processing object tries to
initialize a SPP

GPE requests a SPP from
RTRM via interprocess
communication (IPC)

Manager determines if
there is an algorithm/SPP
match
Optionally programs device

with kernel

Replies to GPE via IPC

24 September 2008 12

VForce Interaction 3
Hardware Available?

No: transfer to software
implementation

Yes
 Load the indicated SPP

control library
 Continue with the

hardware/software
implementation

During execution
communication and
control direct – RTRM not
involved

24 September 2008 13

Previous VForce Work
We previously presented work on several FPGA-based

platforms
Vforce: Aiding the Productivity and Portability in

Reconfigurable Supercomputer Applications via Runtime
Hardware Binding, HPEC 2007

VFORCE: VSIPL++ for Reconfigurable Computing
Environments, HPEC 2006

Early work on Annapolis WildCard II PCMCIA card
Support for Cray XD1 and Mercury 6U VME systems

All Mercury development done by Albert Conti
(NU MS 12/2006, Mitre)

FFT and time domain beamformer implemented for Cray and
Mercury machines

24 September 2008 14

VSIPL++ FFT Replacement
Drop in replacement for VSIPL++ FFT
FFT suffers from granularity issues for 1:1 function

offload
Including data transfers always slower on Cray XD1

Was used to look at VForce overheads
VForce software failsafe vs. VSIPL++

 Included RTRM communication
 Virtually no impact on performance

VForce hardware vs. Native C
 Data copying from opaque views to DMA-able memory hurt

performance (Future Work)

24 September 2008 15

Beamformer

Example large-
granularity VForce
function

VForce supports
asynchronous kernel
control and data transfer
Important for getting max

system performance
Used by XD1 beamformer to achieve additional speedup

Weight Application on FPGA concurrent with Weight
Computation on CPU

24 September 2008 16

Nvida Tesla and CUDA

CUDA
General purpose development environment for Nvidia GPUs
Uses C-language extensions to express parallelism
Includes a toolchain (compiler, debugger, profiler), driver API,

and libraries (CUFFT & CUBLAS)

http://www.nvidia.com/object/tesla_c870.html

Tesla C870 GPU Board
Unified Shader Architecture
Higher ratio of transistors

dedicated to arithmetic vs
CPU

Massively parallel

24 September 2008 17

Extending VForce to GPUs

Similarities to FPGAs
Data transfer to off-die accelerator
Pre-compiled kernels

Differences in kernel execution
GPU kernels can be more flexible at runtime
Relatively small overhead for loading kernels vs FPGA

 Allows executing multiple kernels & mixing and matching

Differences in development
Tools still hardware specific
Fixed hardware, thousands of threads

24 September 2008 18

VForce CUDA Support
On FPGA platforms one SPP control library loads

various FPGA bitstreams and handles all SPP control
interface functionality

RTRM search returns algorithm-specific control library
CUDA allows low-level bitstream-like functionality but not used
Higher-level method allows multiple kernels to be called if

desired and the use of CUFFT and CUBLAS

VForce tries to impose few HW requirements

24 September 2008 19

FFT Results
CUDA FFT uses CUDA

libraries
CUFFT for FFT
CUBLAS for scaling

Current results affected by
data copying like XD1

CodeSourcery VSIPL++
using FFTW on Intel Xeon
5110 (1.6 GHz dual core, 4
MB cache)

Same exact application
code as Cray XD1 FPGA
FFT

24 September 2008 20

Conclusions & Future Work

User application code compiles unmodified
between FPGA, GPU, and software only
architectures

Need more control over memory
Support of new platforms: looking at Cell
New applications

24 September 2008 21

Thank You

Thanks to:
HPEC-SI

The MathWorks

Contact:
mel@coe.neu.edu

Website:
 http://www.ece.neu.edu/groups/rcl/projects/vsipl/vsipl.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

