
Using GPUs to Enable Highly
Reliable Embedded Storage

University of Alabama at Birmingham
115A Campbell Hall
1300 University Blvd.

Birmingham, AL 35294-1170

Computer Science Research Institute
Sandia National Laboratory

PO Box 5800
Albuquerque, NM 87123-1319

Matthew Curry (curryml@cis.uab.edu)
Lee Ward (lee@sandia.gov)

Anthony Skjellum (tony@cis.uab.edu)
Ron Brightwell (rbbrigh@sandia.gov)

High Performance Embedded Computing (HPEC)
Workshop

23-25 September 2008
Approved for public

release; distribution is
unlimited.

mailto:curryml@cis.uab.edu
mailto:lee@sandia.gov
mailto:tony@cis.uab.edu
mailto:rbbrigh@sandia.gov

The Storage Reliability Problem

• Embedded environments are subject to
harsh conditions where normal failure
estimates may not apply

• Since many embedded systems are
purposed for data collection, data integrity
is of high priority

• Embedded systems often must contain as
little hardware as possible (e.g. space
applications)

Current Methods of Increasing
Reliability

• RAID
– RAID 1: Mirroring (Two-disk configuration)
– RAID 5: Single Parity
– RAID 6: Dual Parity

• Nested RAID
– RAID 1+0: Stripe over multiple RAID 1 sets
– RAID 5+0: Stripe over multiple RAID 5 sets
– RAID 6+0: Stripe over multiple RAID 6 sets

Current Methods of Increasing
Reliability

• RAID MTTDL (Mean Time to Data Loss)
– RAID 1: MTTF2/2
– RAID 5: MTTF2/(D*(D-1))
– RAID 6: MTTF3/(D*(D-1)*(D-2))

• Nested RAID MTTDL
– RAID 1+0: MTTDL(RAID1)/N
– RAID 5+0: MTTDL(RAID5)/N
– RAID 6+0: MTTDL(RAID6)/N

RAID Reliabliity (1e7 hours MTTF, 24 hours MTTR)

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1.00E+15

1.00E+16

1.00E+17

1.00E+18

1.00E+19

4 5 6 8 10 12
Number of Disks

M
TT

D
L

RAID N+3
RAID 6+0
RAID 6
RAID 1+0
RAID 5+0
RAID 5
RAID 0

Why N+3 (Or Higher) Isn’t Done

• Hardware RAID solutions largely don’t
support it
– Known Exception: RAID-TP from Accusys

uses three parity disks
• Software RAID doesn’t support it

– Reed-Solomon coding is CPU intensive and
inefficient with CPU memory organization

An Overview of Reed-Solomon
Coding

• General method of generating arbitrary
amounts of parity data for n+m systems

• A vector of n data elements is multiplied
by an n x m dispersal matrix, yielding m
parity elements

• Finite field arithmetic

Multiplication Example

• {37} = 32 + 4 + 1 = 100101 = x5 + x2 + x0

• Use Linear Shift Feedback Register to
multiply an element by {02}

x0 x1 x2 x3 x4 x5 x6 x7

Multiplication Example

• Direct arbitrary multiplication requires
distributing so that only addition (XOR)
and multiplication by two occur.
– {57} x {37}
– {57} x ({02}5 + {02}2 + {02})
– {57} x {02}5 + {57} x {02}2 + {57} x {02}

• Potentially dozens of elementary
operations!

Optimization: Lookup Tables

• Similar to the relationship that holds for real
numbers:

elog(x)+log(y) = x * y
• This relationship translates (almost) directly to

finite field arithmetic, with lookup tables for the
logarithm and exponentiation operators

• Unfortunately, parallel table lookup capabilities
aren’t common in commodity processors
– Waiting patiently for SSE5

NVIDIA GPU Architecture

• GDDR3 Global Memory
• 16-30 Multiprocessing Units
• One shared 8 KB memory region per

multiprocessing unit (16 banks)
• Eight cores per multiprocessor

Integrating the GPU

3+3 Performance

0

200

400

600

800

1000

1200

3 12 21 30 39 12 30 48 66 84 10
2

12
0

13
8

15
6

17
4

19
2

21
0

22
8

24
6

26
4

28
2

30
0

31
8

33
6

35
4

37
2

39
0

Data Size (KB)

Th
ro

ug
hp

ut
 (M

B
/s

)

3+3

29+3 Performance

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

58 116 174 232 290 348

Data Size (KB)

Th
ro

ug
hp

ut
 (M

B
/s

)

29+3

Neglecting PCI Traffic: 3+3

0

500

1000

1500

2000

2500

3 12 21 30 39 12 30 48 66 84 10
2

12
0

13
8

15
6

17
4

19
2

21
0

22
8

24
6

26
4

28
2

30
0

31
8

33
6

35
4

37
2

39
0

Data Size (KB)

Th
ro

ug
hp

ut
 (M

B
/s

)

3+3 (No PCI Traffic)

Conclusion

• GPUs are an inexpensive way to increase
the speed and reliability of software RAID

• By pipelining requests through the GPU,
N+3 (and greater) are within reach
– Requires minimal hardware investment
– Provides greater reliability than available with

current hardware solutions
– Sustains high throughput compared to

modern hard disks

	Using GPUs to Enable Highly Reliable Embedded Storage
	The Storage Reliability Problem
	Current Methods of Increasing Reliability
	Current Methods of Increasing Reliability
	Slide Number 5
	Why N+3 (Or Higher) Isn’t Done
	An Overview of Reed-Solomon Coding
	Multiplication Example
	Multiplication Example
	Optimization: Lookup Tables
	NVIDIA GPU Architecture
	Integrating the GPU
	3+3 Performance
	29+3 Performance
	Neglecting PCI Traffic: 3+3
	Conclusion

