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The Storage Reliability Problem

• Embedded environments are subject to 
harsh conditions where normal failure 
estimates may not apply

• Since many embedded systems are 
purposed for data collection, data integrity 
is of high priority

• Embedded systems often must contain as 
little hardware as possible (e.g. space 
applications)



Current Methods of Increasing 
Reliability

• RAID
– RAID 1:  Mirroring (Two-disk configuration)
– RAID 5:  Single Parity
– RAID 6:  Dual Parity

• Nested RAID
– RAID 1+0:  Stripe over multiple RAID 1 sets
– RAID 5+0:  Stripe over multiple RAID 5 sets
– RAID 6+0:  Stripe over multiple RAID 6 sets



Current Methods of Increasing 
Reliability

• RAID MTTDL (Mean Time to Data Loss)
– RAID 1:  MTTF2/2
– RAID 5:  MTTF2/(D*(D-1))
– RAID 6:  MTTF3/(D*(D-1)*(D-2))

• Nested RAID MTTDL
– RAID 1+0:  MTTDL(RAID1)/N
– RAID 5+0:  MTTDL(RAID5)/N
– RAID 6+0:  MTTDL(RAID6)/N



RAID Reliabliity (1e7 hours MTTF, 24 hours MTTR)
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Why N+3 (Or Higher) Isn’t Done

• Hardware RAID solutions largely don’t 
support it
– Known Exception:  RAID-TP from Accusys 

uses three parity disks
• Software RAID doesn’t support it

– Reed-Solomon coding is CPU intensive and 
inefficient with CPU memory organization



An Overview of Reed-Solomon 
Coding

• General method of generating arbitrary 
amounts of parity data for n+m systems

• A vector of n data elements is multiplied 
by an n x m dispersal matrix, yielding m 
parity elements

• Finite field arithmetic



Multiplication Example

• {37} = 32 + 4 + 1 = 100101 = x5 + x2 + x0

• Use Linear Shift Feedback Register to 
multiply an element by {02}

x0 x1 x2 x3 x4 x5 x6 x7



Multiplication Example

• Direct arbitrary multiplication requires 
distributing so that only addition (XOR) 
and multiplication by two occur.
– {57} x {37}
– {57} x ({02}5 + {02}2 + {02})
– {57} x {02}5 + {57} x {02}2 + {57} x {02}

• Potentially dozens of elementary 
operations!



Optimization:  Lookup Tables

• Similar to the relationship that holds for real 
numbers:

elog(x)+log(y)  = x * y
• This relationship translates (almost) directly to 

finite field arithmetic, with lookup tables for the 
logarithm and exponentiation operators

• Unfortunately, parallel table lookup capabilities 
aren’t common in commodity processors
– Waiting patiently for SSE5



NVIDIA GPU Architecture

• GDDR3 Global Memory
• 16-30 Multiprocessing Units
• One shared 8 KB memory region per 

multiprocessing unit (16 banks)
• Eight cores per multiprocessor



Integrating the GPU



3+3 Performance
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29+3 Performance
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Neglecting PCI Traffic:  3+3
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Conclusion

• GPUs are an inexpensive way to increase 
the speed and reliability of software RAID

• By pipelining requests through the GPU, 
N+3 (and greater) are within reach
– Requires minimal hardware investment
– Provides greater reliability than available with 

current hardware solutions
– Sustains high throughput compared to 

modern hard disks
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