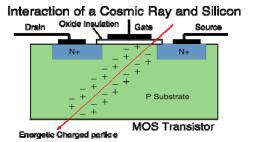
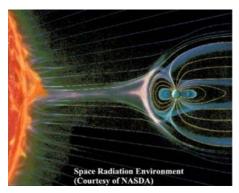


Designing Processing Architectures for Space Applications


John Holland & Eliot Glaser Northrop Grumman Corporation P.O. Box 1693 Baltimore, Maryland 21203 john.holland@ngc.com

High Performance Embedded Computing (HPEC) Workshop 23–25 September 2008

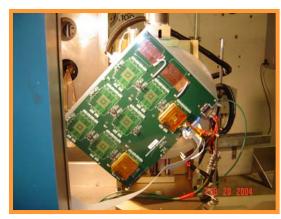

Space Applications Present Conflicting Design Challenges

Approved for public release; distribution is unlimited.

- Challenging Form Factor Requirements Constrain the Processing Design
 - Environmental
 - Thermal
 - Packaging
 - Material restrictions
 - Size, weight, and power (SWAP)

- Processing Requirements Drive Technology Selection
 - Memories
 - CPUs
 - Field programmable gate arrays (FPGA)
 - Application specific integrated circuits (ASIC)
 - High I/O packaging

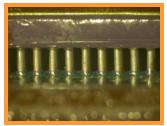
Radiation Variation with Orbit due to the Earth's Magnetic Field


Form Factor Requirements for Space

Environment and Radiation

- Total dose radiation and single event effects (SEE)
- Launch vibration, vacuum & outgassing, material selection
- Thermal Management Cooling and Heating
 - Adequate cooling path for hot components
 - Minimize cold excursions
 - Limited to conduction cooling and heat radiation

Approved for public release; distribution is unlimited.



Component Radiation Testing

Packaging

- Thermal cycling limited by CTE mismatches between components and boards
- Shielding must be considered at component, assembly, and subsystem levels
- Good system grounding is essential
- Size, Weight, and Power (SWAP)
 - Power is critical and impacts size and weight
 - Launch weight is expensive

After 1500 Thermal Cycles

Processing Requirements Demand Advanced Technology

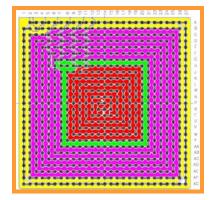
Memories

- Radiation hardened SRAM and EEPROM are available
- Commercial DRAM and Flash NVM are denser and faster but require SEE mitigation

FPGAs

- Anti-fuse FPGAs are radiation hardened
- Flash-based and RAM-based FPGAs require multiple SEE mitigation techniques

ASICs

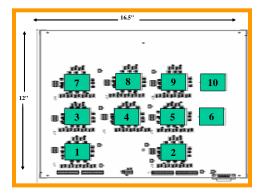

- Radiation-hardened fabrication processes available
- Non-rad-hard processes are more numerous, less expensive, and have more advanced feature sizes

High I/O Packaging

 Ball Grid Array (BGA) and thin-shrink small outline (TSSOP) packages are susceptible to thermal cycle damage Approved for public release; distribution is unlimited.

High Speed ASIC Device

BGA Daisy-chain Package for CTE Testing


In the Poster Session

- Radiation -- Total Dose, Single Event Effects
 - Requirements, assessment, testing
- Thermal Considerations and Packaging Options
- Use of Memories in Space Applications
 - Error detection and correction (EDAC) and power control
- FPGAs
 - Anti-fuse, flash-based, and RAM-based
 - Triple module redundancy (TMR), memory checking, and memory scrubbing
- ASICs
 - Radiation hardened fabrication or upscreening & testing
- High IO Packaging Thermal Cycle Testing

Approved for public release; distribution is unlimited.

With risk assessment and risk mitigation, advanced processing technologies can be available for open system architectures.