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Motivation
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The objective of Nonlinear Digital Predistortion (NDP) is to digitally alter the input to the PA to
compensate for the distortions imparted by the device.

— NDP is capable improving power efficiency while reducing ACI and BER.
Computationally efficient memoryless NDP techniques are not sufficient for linearizing
wideband PAs that impart significant memory effects.

Not feasible to use a computationally complex polynomial predistorter to model/invert state
dependent nonlinearities.

Most previous polynomial approaches consider 1D subkernels as building blocks for the full PD.
Multidimensional filters more easily address asymmetric and aliasing NL.
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Methods
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Divide the full coefficient space into cube coefficient
subspaces (CCS),

— i.e., small hypercubes/parallelepipeds (“diagonal” CCS-D)
of arbitrary dimension.

Model the inverse NL by greedily selecting only the CCS
components that have the greatest impact on
performance.

CCS allows efficient adaptation in multiple dimensions
starting with the first nonlinear component selected.

CCS has an efficient hardware implementation.
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Our technique, the cube coefficient subspaces (CCS), is described here along with a picture of the hardware implementation.
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Results
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Measured Results using Q-Band Solid State PA:
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Our measured results on a Q-Band solid state PA.  The CCS NDP improves ACI by 20dB.
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