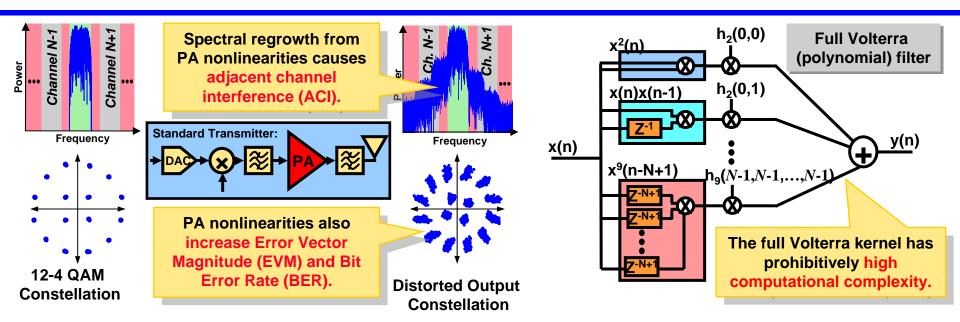


Efficient Multidimensional Polynomial Filtering for Nonlinear Digital Predistortion

Matthew Herman, Benjamin Miller, Joel Goodman

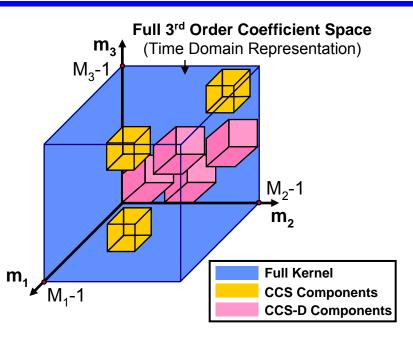
HPEC Workshop 2008


23 September 2008

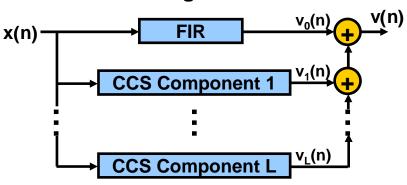
This work is sponsored by the Defense Advanced Research Projects Agency under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

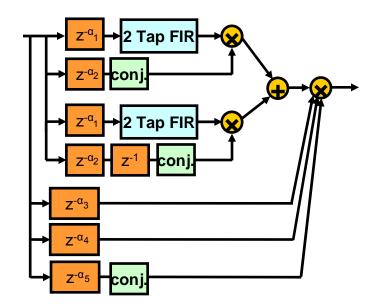
MIT Lincoln Laboratory

Motivation


- The objective of Nonlinear Digital Predistortion (NDP) is to digitally alter the input to the PA to compensate for the distortions imparted by the device.
 - NDP is capable improving power efficiency while reducing ACI and BER.
- Computationally efficient memoryless NDP techniques are not sufficient for linearizing wideband PAs that impart significant memory effects.
- Not feasible to use a computationally complex polynomial predistorter to model/invert state dependent nonlinearities.
 - Most previous polynomial approaches consider 1D subkernels as building blocks for the full PD.
 - Multidimensional filters more easily address asymmetric and aliasing NL.

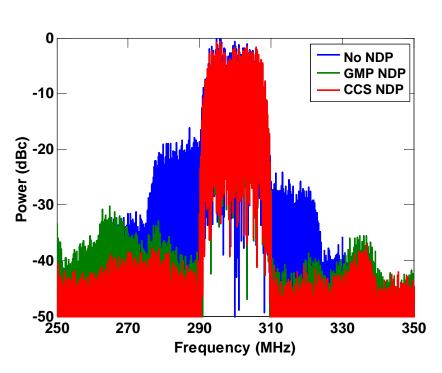
OBJECTIVE: Use small multidimensional filters to build a computationally efficient nonlinear digital predistorter.




Methods

- Divide the full coefficient space into cube coefficient subspaces (CCS),
 - i.e., small hypercubes/parallelepipeds ("diagonal" CCS-D) of arbitrary dimension.
- Model the inverse NL by greedily selecting only the CCS components that have the greatest impact on performance.
- CCS allows efficient adaptation in multiple dimensions starting with the first nonlinear component selected.
- CCS has an efficient hardware implementation.

CCS Nonlinear Digital Predistorter:



Results

Measured Results using Q-Band Solid State PA:

Computational Complexity:

Architecture	Complex Mult. Per Sample	Complex Add. Per Sample	Op'ns Per Second (GOPS)
Generalized Memory Polynomial	156	144	147
2-D CCS/CCS-D	76	32	62

CCS NDP improves ACI by ~20 dB.

CCS reduces ACI by ~7 dB more than the state-of-the-art GMP with less than half as many operations per second.