
0839-118-1

MIT Lincoln Laboratory

Radar Pulse Compression Using the
NVIDIA CUDA SDK

Stephen Bash, David Carpman, and David Holl

HPEC 2008

September 23-25, 2008

This work is sponsored by the Air Force Research Laboratory under Air Force contract FA8721-05-C-0002.
Opinions, interpretations, conclusions and recommendations are those of the author and not necessarily endorsed
by the United States Government.

Presenter
Presentation Notes
Title slide

MIT Lincoln Laboratory
0839-118-2

NVIDIA Compute Unified Device
Architecture SDK

• Create custom kernels that run on GPU
• Extension of C language
• Provides driver- and runtime-level APIs
• Includes numerical libraries

– CUFFT
– CUBLAS

• $/GFLOP GPU=$1.27 CPU=$29.18

Benchmarking the NVIDIA 8800GTX
with the CUDA Development Platform

Michael McGraw-Herdeg, MIT

Douglas P. Enright, The Aerospace Corporation

B. Scott Michel, The Aerospace Corporation

©2007 The Aerospace Corporation

HPEC 07:

Presenter
Presentation Notes
Introducing the NVIDIA CUDA software development kit (SDK). NVIDIA now provides an extension to the C programming language that allows developers to write custom code that runs directly on NVIDIA graphics processing units (GPUs). The SDK consists of two interfaces (driver and runtime) which allows the programmer to tailor the complexity of his/her code to the current problem. The SDK also includes BLAS and FFT implementations called CUBLAS and CUFFT respectively. For the signal processing applications we’re interested in, these libraries provide a significant reduction in the amount of custom code required. An interesting metric to compare the CPU and the GPU is price per gigaflop: i.e. how much does it cost to do a fixed amount of computation. At the time of purchase for this evaluation (early spring 2008), the GPU cost only $1.27 per gigaflop, while the top of the line CPU was running $29.18 per gigaflop.

The concept of GPU computing for signal processing has been discussed previously at HPEC. Last year (2007) Douglas Enright of the Aerospace Corporation presented results comparing the CPU and GPU for finite impulse response (FIR) filtering. Here I’m showing one of his results, the performance observed for frequency domain FIR filtering. (next slide)

MIT Lincoln Laboratory
0839-118-3

NVIDIA Compute Unified Device
Architecture SDK

• Create custom kernels that run on GPU
• Extension of C language
• Provides driver- and runtime-level APIs
• Includes numerical libraries

– CUFFT
– CUBLAS

• $/GFLOP GPU=$1.27 CPU=$29.18

Benchmarking the NVIDIA 8800GTX
with the CUDA Development Platform

Michael McGraw-Herdeg, MIT

Douglas P. Enright, The Aerospace Corporation

B. Scott Michel, The Aerospace Corporation

©2007 The Aerospace Corporation

HPEC 07:

Presenter
Presentation Notes
Here I highlight the massive improvement shown by the GPU (in purple) relative to the CPU (black). Unfortunately (as Doug mentioned in his presentation), almost half of the GPU speedup is lost due to overhead (mostly memory transfer) between the CPU and GPU. In this study, I investigate ways to leverage the GPU’s performance in frequency domain FIR filtering for radar pulse compression. I investigate two signal processing chains with differing computational complexity.

MIT Lincoln Laboratory
0839-118-4

Radar Pulse Compression

• Waveform design and processing
to achieve higher range
resolution and sensitivity*

• Processing consists of
convolution with FIR filter

– Doppler tolerant (top): traditional
frequency domain convolution

– Doppler intolerant (bottom):
additional FFT and Doppler
correction required

* Skolnik, Radar Handbook, Second Edition. McGraw Hill Publishing, Boston, MA, 1990.

Replica

Replica

Fast Time
IFFT

Fast Time
FFT

Fast Time
FFT

Slow Time
FFT

Fast Time
IFFT

Fast Time
IFFT

Doppler
Correction

Presenter
Presentation Notes
Radar pulse compression is a common technique to improve range resolution and signal-to-noise ratio (SNR) in many radar applications. For this talk I will examine pulse compression (via frequency domain FIR filtering) for both Doppler-shift tolerant waveforms and Doppler-shift intolerant waveforms. Either processing chain can be applied to one or more waveforms for a given set of input data (the top figure shows only a single waveform replica, while the bottom demonstrates the use of multiple replicas). The differing computational complexity of these two chains provides some insight into achieving the greatest advantage for the GPU over the CPU. In these diagrams “fast time”represents time samples from a single pulse repetition interval (PRI) while “slow time” represents the same fast time sample across multiple PRIs.

MIT Lincoln Laboratory
0839-118-5

GPU vs. CPU Comparison

• CPU vs GPU comparison in real-world
conditions

– 2 GHz dual quad-core AMD Opterons
vs eVGA eGeForce 8800 Ultra

– Memory transfer to and from GPU
included in timing

0
10

20

30

40

50

60

Processing Time Per Stage
500

480

490
CPU
GPU

St
ag

e
Ti

m
e

(m
s)

Batch Size

1D FFT

1 4 16 64 256
1024
2048
4096
8192

16384
32768
65536

1000
1960
4725

10368
27000

FF
T

Si
ze

3

2

1

0.5

0.3

G
PU

 S
pe

ed
up

Extract Range Region

Fast Time IFFT

Multiply Replica 3

Extract Range Region

Fast Time IFFT

Multiply Replica 2

Extract Range Region

Doppler Correction

Doppler FFT

Doppler Window

Fast Time IFFT

Multiply Replica 1

Fast Time FFT

Presenter
Presentation Notes
My poster examines the previously shown signal processing chains in real world conditions. I begin with the fundamental FFT operation and compare the performance of the GPU to the CPU. Here we have an excerpt of that study, showing that for simple 1D FFTs, the GPU performance is lackluster. But eventually we build up an entire signal processing chain and analyze its performance both on a per-stage basis (shown at right), and a cumulative basis. For the poster, similar to the FFT results, I will plot the GPU speedup for signal processing chains as a function of coherent processing interval size and waveform size. From this graphic (right) it’s obvious the GPU is faster than the CPU for some operations (Doppler Correction and Multiply Replica), but slower for others (IFFT). Come see the poster to see which processing engine wins in the final tally!

MIT Lincoln Laboratory
0839-118-6

Backups

Presenter
Presentation Notes
Beginning of backup slides

MIT Lincoln Laboratory
0839-118-7

Reference: $/GFLOP

As of July 2007, these products represent the top of the line consumer CPU and graphics
card according to floating point computational power:

1. Kentsfield Core 2 Extreme QX6800
37.7 GFLOPS – fastest CPU as of 7/16/2007

http://www.tomshardware.com/2007/07/16/cpu_charts_2007/page36.html
$1100 – price as of March 10, 2008

http://www.google.com/products?q=Kentsfield+Core+2+Extreme+QX6800
$/GFLOPS = $29.18
Notes: Price excludes motherboard + power supply + memory + GPU

2. EVGA GeForce 8800 Ultra Superclocked (NVIDIA)
576 GFLOPS – theoretical peak

http://en.wikipedia.org/wiki/GeForce_8_Series
$730 – price as of March 10, 2008

http://www.google.com/products?q=768-P2-N887-AR&scoring=p
$/GFLOPS = $1.27
Notes: Price includes 768 MB GDDR3 memory, but excludes: motherboard + power supply + CPU

Presenter
Presentation Notes
This slide highlights the values used for calculating the price per gigaflop statistics quoted on the second slide of this presentation. This slide will not be presented unless a question arises about the calculation of these values.

	Radar Pulse Compression Using the NVIDIA CUDA SDK
	NVIDIA Compute Unified Device Architecture SDK
	NVIDIA Compute Unified Device Architecture SDK
	Radar Pulse Compression
	GPU vs. CPU Comparison
	Backups
	Reference: $/GFLOP

