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Introduction 
Channelization and resampling of digital signals are 
common elements in a wide range of signal processing 
applications. Depending upon the requirements of the 
system, these basic tasks can consume a significant portion 
of the overall system computation budget, and can limit the 
data rates at which the system can operate. 

In this paper, we present efficient implementations of a 
channelizer and resampler using a Graphics Processing Unit 
(GPU). By formulating our channelizer and resampler 
implementations in data-parallel forms, we are able to use 
the parallelism of the GPU to achieve a significant 
improvement in processing time compared with general-
purpose CPU implementations of the same algorithms. 

Software-Defined/Cognitive Radio 
Applications 
Channelization and resampling are key components in a 
Software-Defined Radio (SDR) - Cognitive Radio (CR) 
system. These systems have become cost-effective and 
computationally viable in many applications, including 
public safety communications systems [1] and commercial 
wireless PCS devices. [2] 
SDR systems leverage the computational power of modern 
hardware to perform in software much of the radio 
processing that has been traditionally been implemented 
using fixed hardware.  
Cognitive radio systems utilize the dynamic abilities of 
SDR platforms to implement adaptive logic to optimize the 
performance of the radio in a given environment. CR 
systems perform real-time analysis of their working 
spectrum and make decisions based on this analysis to 
modify the radio parameters of its associated SDR. 
For SDR/CR systems to characterize their environments, 
many channelize the wideband operating spectrum and 
perform occupancy analysis and identification of the 
narrowband signals within the environment. This task must 
be performed efficiently so the information can be used by 
the CR logic to make adjustments to the radio waveforms. 

Data resampling is another processor-intensive task in 
SDR/CR systems. SDR/CR systems inherently must deal 
with a wide range of data rates in a dynamic manner. These 
resampling rates can often involve rational resampling rates 
that involve large integer up- and down-sample factors, 
requiring efficient processing in order to maintain real-time 
performance. 

Polyphase Processing 
A common approach to performing channelization and 
resampling is by utilizing a polyphase filterbank 

implementation (see [2], [3]). For a filterbank of Q equally-
spaced channels, each at a rate of P/Q times the input 
sample rate and using a FIR filter of length KQ, a 
polyphase implementation is more efficient by a factor of : 
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over a simple tune-upsample-filter-downsample approach. 
(for cases where Q > P, K > P, and where filtering is done 
using FFT processing). 

For a polyphase implementation of a rate (P/Q) resampler 
using a filter length of (KQ), the improvement is: 

)log()log(
))log()(log(

PK
QKP

−
+

 

compared with a simple upsample-filter-downsample 
approach. (assuming here Q > P, K > P) 

The polyphase formulation of channelization and 
resampling also lends itself well to a parallel processing 
implementation. (Figure 1) The core processing stages of a 
polyphase filterbank can be preformed as large blocks of 
parallel FFTs, allowing the use of highly-optimized 
software libraries. 
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Figure 1. Parallel Processing Chain for Q-channel 
Channelization at Oversampled Rate P 

GPU Processing 
For all of our GPU development in this paper we utilized a 
NVIDIA 8800 GTX (see [5] for specifications) running 
under 32-bit Red Hat Enterprise Linux 4. We used the 
NVIDIA CUDA toolkit [6] and the CUFFT 1.1 library [7] 
to create our GPU channelizer and resampler 
implementations. 

We wrote custom GPU kernel code using CUDA to 
perform our data conversions (integer/signed/endian), and 
to perform parallel data rearranging and multiplexing 



between the FFT stages. We also wrote a kernel for 
performing a tailored parallel binary reduction operation for 
the resampler application. 

CPU Processing 
For comparison, we created reference implementations of 
both the channelizer and resampler using CPU code. We 
implemented these libraries in C/C++ using GCC 3.4.5 
under 32-bit Red Hat Enterprise Linux 4 (kernel 2.6.9-34) 
running on a Dell Precision 690 workstation with two dual-
core Intel Xeon 2.33 GHz processors (5140 Woodcrest, 
4MB L2 cache), and 2GB of system memory.  

We used single-precision, SSE-enabled, multithreaded 
FFTW (version 3.1.2) libraries built from source to perform 
our CPU FFT computations. Whenever appropriate, we 
used parallel FFTW plans to maximize our CPU FFT 
performance. We configured FFTW to use four threads for 
generating its FFT plans in order to match the number of 
cores on our system. 

Test Cases 
As our baseline test case, we used a 16-bit, signed complex 
data file stored on disk, containing 228 samples (1GB file 
size). We ran a range of channelization tests, with the 
number of channels processed ranging from 2-1024. 

Because our processing is heavily I/O bound by the file 
writing process, our timing results presented here represent 
no writing of the resulting data to disk, thereby highlighting 
the relative performance advantage of the GPU. These 
numbers do, however, include reading data from the file 
and transferring data to and from the GPU device. 

Figure 2. Channelization Time for 1GB 16-bit Complex Signed 
Data File, Filter Length = (number channels * 63) 

Results 
From Figure 2, we can see that the GPU implementation 
was typically on the order of 4-10 times faster than the 
associated CPU polyphase implementation across a wide 
range of channelization levels. 

Figure 3 shows timing results for a range of decimation 
rates for the polyphase resampler. In this example, the 
resample ratio was a simple decimation by a factor of 1/N. 
These results show that the GPU processing advantage over 
the CPU grows as the decimation rate increases, with a 10x 
advantage for a decimation rate of 1024. Even for lower 

decimation rates, however, the GPU outperforms the CPU 
by at least a factor of two.  

 
Figure 3. Resample Time for 1GB 16-bit Complex, Signed 

Data File, Filter Length = (decimation rate * 63) 

Conclusions 
Based on our results, using a GPU in channelization and 
resampling applications can provide a significant 
improvement in processing time. This advantage is 
especially pronounced for higher channelization and 
decimation rates. 

To further take advantage the GPU’s parallelism, we plan to 
extend the processing on the channelized data while still on 
the device to include filtering, subspace processing, 
equalization, and demodulation.  We have implemented 
GPU approaches to some of these signal processing tasks 
already and need only apply them in parallel to the 
channelized streams.   
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