
Channelization and Resampling Using a Graphics Processing Unit
Ambrose Slone, Paul Otto, Aqsa Kuraishi

Innovative Technology Office
Space and Geospatial Intelligence Business Unit, SAIC

14668 Lee Road, Chantilly, VA, 20151
ambrose.j.slone@saic.com, paul.r.otto.jr@saic.com, aqsa.i.kuraishi@saic.com

Introduction
Channelization and resampling of digital signals are
common elements in a wide range of signal processing
applications. Depending upon the requirements of the
system, these basic tasks can consume a significant portion
of the overall system computation budget, and can limit the
data rates at which the system can operate.

In this paper, we present efficient implementations of a
channelizer and resampler using a Graphics Processing Unit
(GPU). By formulating our channelizer and resampler
implementations in data-parallel forms, we are able to use
the parallelism of the GPU to achieve a significant
improvement in processing time compared with general-
purpose CPU implementations of the same algorithms.

Software-Defined/Cognitive Radio
Applications
Channelization and resampling are key components in a
Software-Defined Radio (SDR) - Cognitive Radio (CR)
system. These systems have become cost-effective and
computationally viable in many applications, including
public safety communications systems [1] and commercial
wireless PCS devices. [2]
SDR systems leverage the computational power of modern
hardware to perform in software much of the radio
processing that has been traditionally been implemented
using fixed hardware.
Cognitive radio systems utilize the dynamic abilities of
SDR platforms to implement adaptive logic to optimize the
performance of the radio in a given environment. CR
systems perform real-time analysis of their working
spectrum and make decisions based on this analysis to
modify the radio parameters of its associated SDR.
For SDR/CR systems to characterize their environments,
many channelize the wideband operating spectrum and
perform occupancy analysis and identification of the
narrowband signals within the environment. This task must
be performed efficiently so the information can be used by
the CR logic to make adjustments to the radio waveforms.

Data resampling is another processor-intensive task in
SDR/CR systems. SDR/CR systems inherently must deal
with a wide range of data rates in a dynamic manner. These
resampling rates can often involve rational resampling rates
that involve large integer up- and down-sample factors,
requiring efficient processing in order to maintain real-time
performance.

Polyphase Processing
A common approach to performing channelization and
resampling is by utilizing a polyphase filterbank

implementation (see [2], [3]). For a filterbank of Q equally-
spaced channels, each at a rate of P/Q times the input
sample rate and using a FIR filter of length KQ, a
polyphase implementation is more efficient by a factor of :

)log())log()(log(
))log()(log(

QPPKK
QKKPQ

+−
+

over a simple tune-upsample-filter-downsample approach.
(for cases where Q > P, K > P, and where filtering is done
using FFT processing).

For a polyphase implementation of a rate (P/Q) resampler
using a filter length of (KQ), the improvement is:

)log()log(
))log()(log(

PK
QKP

−
+

compared with a simple upsample-filter-downsample
approach. (assuming here Q > P, K > P)

The polyphase formulation of channelization and
resampling also lends itself well to a parallel processing
implementation. (Figure 1) The core processing stages of a
polyphase filterbank can be preformed as large blocks of
parallel FFTs, allowing the use of highly-optimized
software libraries.

Interleave by
Q and

segment into
N blocks

NQ Parallel
FFTs

Multiply by filter
coefficients
(P N blocks)

(P N Q)
Parallel
IFFTs

Rearrange
into Q

channels

Q-point FFT for
each output

vector
(N * blocksize
parallel FFTs)

Figure 1. Parallel Processing Chain for Q-channel
Channelization at Oversampled Rate P

GPU Processing
For all of our GPU development in this paper we utilized a
NVIDIA 8800 GTX (see [5] for specifications) running
under 32-bit Red Hat Enterprise Linux 4. We used the
NVIDIA CUDA toolkit [6] and the CUFFT 1.1 library [7]
to create our GPU channelizer and resampler
implementations.

We wrote custom GPU kernel code using CUDA to
perform our data conversions (integer/signed/endian), and
to perform parallel data rearranging and multiplexing

between the FFT stages. We also wrote a kernel for
performing a tailored parallel binary reduction operation for
the resampler application.

CPU Processing
For comparison, we created reference implementations of
both the channelizer and resampler using CPU code. We
implemented these libraries in C/C++ using GCC 3.4.5
under 32-bit Red Hat Enterprise Linux 4 (kernel 2.6.9-34)
running on a Dell Precision 690 workstation with two dual-
core Intel Xeon 2.33 GHz processors (5140 Woodcrest,
4MB L2 cache), and 2GB of system memory.

We used single-precision, SSE-enabled, multithreaded
FFTW (version 3.1.2) libraries built from source to perform
our CPU FFT computations. Whenever appropriate, we
used parallel FFTW plans to maximize our CPU FFT
performance. We configured FFTW to use four threads for
generating its FFT plans in order to match the number of
cores on our system.

Test Cases
As our baseline test case, we used a 16-bit, signed complex
data file stored on disk, containing 228 samples (1GB file
size). We ran a range of channelization tests, with the
number of channels processed ranging from 2-1024.

Because our processing is heavily I/O bound by the file
writing process, our timing results presented here represent
no writing of the resulting data to disk, thereby highlighting
the relative performance advantage of the GPU. These
numbers do, however, include reading data from the file
and transferring data to and from the GPU device.

Figure 2. Channelization Time for 1GB 16-bit Complex Signed
Data File, Filter Length = (number channels * 63)

Results
From Figure 2, we can see that the GPU implementation
was typically on the order of 4-10 times faster than the
associated CPU polyphase implementation across a wide
range of channelization levels.

Figure 3 shows timing results for a range of decimation
rates for the polyphase resampler. In this example, the
resample ratio was a simple decimation by a factor of 1/N.
These results show that the GPU processing advantage over
the CPU grows as the decimation rate increases, with a 10x
advantage for a decimation rate of 1024. Even for lower

decimation rates, however, the GPU outperforms the CPU
by at least a factor of two.

Figure 3. Resample Time for 1GB 16-bit Complex, Signed

Data File, Filter Length = (decimation rate * 63)

Conclusions
Based on our results, using a GPU in channelization and
resampling applications can provide a significant
improvement in processing time. This advantage is
especially pronounced for higher channelization and
decimation rates.

To further take advantage the GPU’s parallelism, we plan to
extend the processing on the channelized data while still on
the device to include filtering, subspace processing,
equalization, and demodulation. We have implemented
GPU approaches to some of these signal processing tasks
already and need only apply them in parallel to the
channelized streams.

References
[1] Use Cases for Cognitive Applications in Public Safety

Communications Systems – Vol. 1 Review of the 7 July
Bombing of the London Underground,
http://www.sdrforum.org/pages/documentLibrary/documents/
SDRF-07-P-0019-V1_0_0.pdf

[2] Business Model for Wireless PCS, SDR Forum, 2003,
http://www.sdrforum.org/pages/documentLibrary/documents/
SDRF-03-P-0001-V1_0_0_Business_Case.pdf

[3] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal
Processing, Prentice-Hall, Englewood Cliffs, New Jersey,
1983.

[4] F. J. Harris, C. Dick, and M. Rice, “Digital Receivers and
Transmitters Using Polyphase Filter Banks for Wireless
Communications,” IEEE Transactions on Microwave Theory
and Techniques, Vol. 51, No. 4, April 2003.

[5] http://www.nvidia.com/page/geforce_8800.html

[6] CUDA Programming Guide, Version 1.1, http://
developer.download.nvidia.com/compute/cuda/1_1/NVIDIA
_CUDA_Programming_Guide_1.1.pdf

[7] CUDA CUFFT Library User’s Manual, Version 1.1,
http://developer.download.nvidia.com/compute/cuda/1_1/CU
FFT_Library_1.1.pdf

[8] FFTW3 User’s Guide, http://www.fftw.org/fftw3.pdf

