Building manycore processor-to-DRAM networks using monolithic silicon photonics

Ajay Joshi[†], Christopher Batten[†], Vladimir Stojanović[†], Krste Asanović[‡]

[†]MIT, 77 Massachusetts Ave, Cambridge MA 02139
[‡]UC Berkeley, 430 Soda Hall, MC #1776, Berkeley, CA 94720
{joshi, cbatten, vlada}@mit.edu, krste@eecs.berkeley.edu

High Performance Embedded Computing (HPEC) Workshop

23-25 September 2008

Manycore systems design space

Manycore system bandwidth requirements

Manycore systems – bandwidth, pin count and power scaling

Interconnect bottlenecks

Interconnect bottlenecks

Outline

- Motivation
- Monolithic silicon photonic technology
- Processor-memory network architecture exploration
- Manycore system using silicon photonics
- Conclusion

Unified on-chip/off-chip photonic link

- Supports dense wavelength-division multiplexing that improves bandwidth density
- Uses monolithic integration that reduces energy consumption
- Utilizes the standard bulk CMOS flow

Optical link components

65 nm bulk CMOS chip designed to test various optical devices

Silicon photonics area and energy advantage

Outline

- Motivation
- Monolithic silicon photonic technology
- Processor-memory network architecture exploration
 - Baseline electrical mesh topology
 - Electrical mesh with optical global crossbar topology
- Manycore system using silicon photonics
- Conclusion

Baseline electrical system architecture

- Access point per DM distributed across the chip
- Two on-chip electrical mesh networks
 - Request path core \rightarrow access point \rightarrow DRAM module
 - Response path DRAM module \rightarrow access point \rightarrow core

Interconnect network design methodology

- Ideal throughput and zero load latency used as design metrics
- Energy constrained approach is adopted
- Energy components in a network
 - Mesh energy (E_m) (router-to-router links (RRL), routers)
 - IO energy (*E_{io}*) (logic-to-memory links (LML))

(22nm tech, 256 cores @ 2.5 GHz, 8 nJ/cyc energy budget)

- System throughput limited by on-chip mesh or I/O links
- On-chip mesh could be over-provisioned to overcome mesh bottleneck
- Zero load latency limited by data serialization

(22nm tech, 256 cores @ 2.5 GHz, 8 nJ/cyc energy budget)

- System throughput limited by on-chip mesh or I/O links
- On-chip mesh could be over-provisioned to overcome mesh bottleneck
- Zero load latency limited by data serialization

(22nm tech, 256 cores @ 2.5 GHz, 8 nJ/cyc energy budget)

- System throughput limited by on-chip mesh or I/O links
- On-chip mesh could be over-provisioned to overcome mesh bottleneck
- Zero load latency limited by data serialization

(22nm tech, 256 cores @ 2.5 GHz, 8 nJ/cyc energy budget)

- System throughput limited by on-chip mesh or I/O links
- On-chip mesh could be over-provisioned to overcome mesh bottleneck
- Zero load latency limited by data serialization

Outline

- Motivation
- Monolithic silicon photonic technology
- Processor-memory network architecture exploration
 - Baseline electrical mesh topology
 - Electrical mesh with optical global crossbar topology
- Manycore system using silicon photonics
- Conclusion

Optical system architecture

- Off-chip electrical links replaced with optical links
- Electrical to optical conversion at access point
- Wavelengths in each optical link distributed across various core-DRAM module pairs

- Reduced I/O cost improves system bandwidth
- Reduction in latency due to lower serialization latency
- On-chip network is the new bottleneck

- Reduced I/O cost improves system bandwidth
- Reduction in latency due to lower serialization latency
- On-chip network is the new bottleneck

Optical multi-group system architecture

Break the single on-chip electrical mesh into several groups

- Each group has its own smaller mesh
- Each group still has one AP for each DM
- More APs \rightarrow each AP is narrower (uses less λ s)
- Use optical network as a very efficient global crossbar
- Need a crossbar switch at the memory for arbitration MIT/UCB

- Grouping moves traffic from energy-inefficient mesh channels to energy-efficient photonic channels
- Grouping and silicon photonics provides 10x-15x throughput improvement
- Grouping reduces ZLL in photonic range, but increases ZLL in
 - electrical range

Simulation results

- Grouping
 - 2x improvement in bandwidth at comparable latency
- Overprovisioning
 - 2x-3x improvement in bandwidth for small group count at comparable latency
 - Minimal improvement for large group count
- MIT/UCB

Simulation results

• Replacing off-chip electrical with photonics (Eg1x4 \rightarrow Og1x4)

- 2x improvement in bandwidth at comparable latency
- □ Using opto-electrical global crossbar (Eg4x2 \rightarrow Og16x1)
 - 8x-10x improvement in bandwidth at comparable latency

Outline

- Motivation
- Monolithic silicon photonic technology
- Processor-memory network architecture exploration
- Manycore system using silicon photonics
- Conclusion

Logical View

Logical View

Logical View

Logical View

Physical View

Logical View

Physical View

Full 256-core system design

Outline

- Motivation
- Monolithic silicon photonic technology
- Processor-memory network architecture exploration
- Manycore system using silicon photonics
- Conclusion

Conclusion

- On-chip network design and memory bandwidth will limit manycore system performance
- Unified on-chip/off-chip photonic link is proposed to solve this problem
- Grouping with optical global crossbar improves system throughput
- For an energy-constrained approach, photonics provide 8-10x improvement in throughput at comparable latency

Backup

MIT Eos1 65 nm test chip

- Texas Instruments standard 65 nm bulk CMOS process
- First ever photonic chip in sub-100nm CMOS
- Automated photonic device layout
- Monolithic integration with electrical modulator drivers

Optical waveguide

Cross-sectional view of a photonic chip SEM image of a poly silicon waveguide

- Waveguide made of polysilicon
- Silicon substrate under waveguide etched away to provide optical cladding
- 64 wavelengths per waveguide in opposite directions

Modulators and filters

Double-ring resonant filter

- 2nd order ring filters used
- Rings tuned using sizing and heating

Resonant racetrack modulator

Modulator is tuned using charge injection

Sub-100 fJ/bit energy cost for the modulator driver

Photodetectors

- Embedded SiGe used to create photodetectors
- Monolithic integration enable good optical coupling
- Sub-100 fJ/bit energy cost required for the receiver