
Slide-1

MIT Lincoln Laboratory

Linear Algebraic Graph Algorithms
 for Back End Processing

Jeremy Kepner, Nadya

Bliss,
and Eric Robinson

MIT Lincoln Laboratory
This work is sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002.
Opinions, interpretations, conclusions, and recommendations are those of the author and are not

necessarily endorsed by the United States Government.

Presenter
Presentation Notes
Title Slide

MIT Lincoln Laboratory
Slide-2

•

Post Detection Processing
•

Sparse Matrix Duality
•

Approach

Outline

•

Introduction

•

Power Law Graphs

•

Graph Benchmark

•

Results

•

Summary

Presenter
Presentation Notes
Outline Slide

MIT Lincoln Laboratory
Slide-3

Statistical Network Detection

Problem: Forensic Back-Tracking
•

Currently, significant analyst effort dedicated to
manually identifying links between threat events and
their immediate precursor sites

–

Days of manual effort to fully explore candidate tracks
–

Correlations missed unless recurring sites are recognized
by analysts

–

Precursor sites may be low-value staging areas
–

Manual analysis will not support further backtracking from
staging areas to potentially higher-value sites

Problem: Forensic Back-Tracking
•

Currently, significant analyst effort dedicated to
manually identifying links between threat events and
their immediate precursor sites

–

Days of manual effort to fully explore candidate tracks
–

Correlations missed unless recurring sites are recognized
by analysts

–

Precursor sites may be low-value staging areas
–

Manual analysis will not support further backtracking from
staging areas to potentially higher-value sites

Concept: Statistical Network Detection
•

Develop graph algorithms to identify adversary nodes
by estimating connectivity to known events

–

Tracks describe graph between known sites or events
which act as sources

–

Unknown sites are detected by the aggregation of threat
propagated over many potential connections

Concept: Statistical Network Detection
•

Develop graph algorithms to identify adversary nodes
by estimating connectivity to known events

–

Tracks describe graph between known sites or events
which act as sources

–

Unknown sites are detected by the aggregation of threat
propagated over many potential connections Event A

Event B

Computationally demanding graph processing
– ~ 106

seconds based on benchmarks & scale
– ~ 103

seconds needed for effective CONOPS (1000x improvement)

Planned system capability (over major
urban area)

•

1M Tracks/day (100,000 at any time)
•

100M Tracks in 100 day database
•

1M nodes (starting/ending points)
•

100 events/day (10,000 events in
database)

1st Neighbor
2nd Neighbor
3rd Neighbor

Presenter
Presentation Notes
Post Detection processing in an airborne video surveillance system seeks to identify important nodes (i.e. locations) that connected to multiple events on the ground. Currently, this is done manually by back tracking all the tracks from an event and then trying to correlate them with other backtracks from prior events. This process is labor intensive (will not scale well with increased data sets) and takes a long time (i.e. is not real time).
Planned systems will dramatically increase the amount of data from airborne video surveillance platforms:
1M Tracks/day (100,000 live at any time)
100M Tracks in 100 day database
1M nodes (starting/ending points)
100 events/day (10,000 events in database)
Automated backtracking can potentially accomplished by implementing the manual algorithm using a heuristic such as “Nodes close (a few hops) to lots of events are important”. There are many graph metrics that can be used for implementing such a heuristics. Betweenness Centrality is one such metric whose computational cost has been well characterized. Betweenness Centrality tallies the weighted number of shortest paths between a particular node and all events. The weight assigned between a particular track (i.e. edge in the graph) is function of how many hops it is from an event and its time from the event.
Computing the Betweeness Centralitly of the all the edges (M=10^8) with all the events (N=10^4) would allow important nodes to be automatically identified for further investigation. The compute time for this on a current RISC processor is:
 (10^8 Tracks)(10^4 Events)/(10^6 Traversed Edges Per Second Per RISC processor) = 10^6 seconds
This would need to be reduced to ~1000 seconds to be operationally feasible.
Another, even more interesting application is to do automated tip/queue on live tracks. A basic algorithm for this is to estimate the endpoints of all live tracks and then hypothesize that an event takes place when the track completes its destination. Using these hypothesized events, the Betweenness Centrality of the nodes in the graph are recomputed, if the Betweenness Centrality changes very little, then the event is “expected” and the track should be flagged for further investigation.

MIT Lincoln Laboratory
Slide-4

•

Graphs can be represented as a sparse matrices
–

Multiply by adjacency matrix step to neighbor vertices

–

Work-efficient implementation from sparse data structures

•

Most algorithms reduce to products on semi-rings: C = A “+”.“x”

B
–

“x”

: associative, distributes over “+”

– �“+” : associative, commutative
–

Examples: +.* min.+ or.and

x ATx

1 2

3

4 7

6

5

AT

Graphs as Matrices

Presenter
Presentation Notes
Graphs can be represented as a sparse matrices.
Most algorithms reduce to products on semi-rings.

MIT Lincoln Laboratory
Slide-5

Distributed Array Mapping
Adjacency Matrix Types:

Distributions:

RANDOM TOROIDAL POWER LAW (PL)

1D BLOCK 2D BLOCK 2D CYCLIC EVOLVED

Sparse Matrix duality provides a natural way of exploiting
distributed data distributions

Sparse Matrix duality provides a natural way of exploiting
distributed data distributions

PL SCRAMBLED

ANTI-DIAGONAL

Presenter
Presentation Notes
Different parallel data distributions are optimal for different types of matrices.

MIT Lincoln Laboratory
Slide-6

Algorithm Comparison

Algorithm (Problem) Canonical
Complexity

Array-Based
Complexity

Critical Path
(for array)

Bellman-Ford (SSSP) Θ(mn) Θ(mn) Θ(n)
Generalized B-F (APSP) NA Θ(n3

log n) Θ(log n)
Floyd-Warshall

(APSP) Θ(n3) Θ(n3) Θ(n)
Prim (MST) Θ(m+n log n) Θ(n2) Θ(n)
Borůvka

(MST) Θ(m log n) Θ(m log n) Θ(log2

n)
Edmonds-Karp (Max Flow) Θ(m2n) Θ(m2n) Θ(mn)
Push-Relabel

(Max Flow) Θ(mn2)
(or Θ(n3))

O(mn2) ?

Greedy MIS (MIS) Θ(m+n log n) Θ(mn+n2) Θ(n)
Luby

(MIS) Θ(m+n log n) Θ(m log n) Θ(log n)

(n = |V |

and m = |E |.)Majority of selected algorithms can be represented
with array-based constructs with equivalent complexity.

Presenter
Presentation Notes
Majority of selected algorithms can be represented with array-based constructs with equivalent computational complexity.

MIT Lincoln Laboratory
Slide-7

•

Identify key staging and
logistic sites areas from
persistent surveillance of
vehicle tracks

•

Higher dimension graph
analysis to determine sensor
net coverage [Jadbabaie]

A few DoD

Applications using Graphs

FORENSIC BACKTRACKING DATA FUSION TOPOLOGICAL DATA ANALYSIS

Event A

Event B

•

Minimal Spanning Trees
•

Betweenness

Centrality
•

Bayesian belief propagation
•

Single source shortest path

Key AlgorithmApplication

•

Subspace reduction
•

Identifying staging areas
•

Feature aided 2D/3D fusion
•

Finding cycles on complexes

Key Semiring

Operation

X

+.* A +.* XT

A

+.* B
A

+.* B

(A, B

tensors)
D

min.+ A (A tensor)

2D/3D Fused
Imagery

•

Bayes

nets for fusing
imagery and ladar

for
better on board tracking

Presenter
Presentation Notes
Many DoD applications require graphs and can be recast as semi-ring products.

MIT Lincoln Laboratory
Slide-8

Approach: Graph Theory Benchmark

•

Scalable benchmark
specified by graph
community

•

Goal
–

Stress parallel
computer architecture

•

Key data
–

Very large Kronecker

graph

•

Key algorithm
–

Betweenness

Centrality

•

Computes number of shortest paths each vertex is on
–

Measure of vertex “importance”
–

Poor efficiency on conventional computers

Presenter
Presentation Notes
Graph theory benchmark measures performance on key graph operation on power-law graphs.

MIT Lincoln Laboratory
Slide-9

•

Kronecker Model
•

Analytic Results

Outline

•

Introduction

•

Power Law Graphs

•

Graph Benchmark

•

Results

•

Summary

Presenter
Presentation Notes
Outline Slide

MIT Lincoln Laboratory
Slide-10

Power Law Graphs

Target Identification

Social Network Analysis

Anomaly Detection

•

Many graph algorithms must operate on power law graphs
•

Most nodes have a few edges

•

A few nodes have many edges

•

Many graph algorithms must operate on power law graphs
•

Most nodes have a few edges

•

A few nodes have many edges

Presenter
Presentation Notes
Power law graphs are common in many applications.

MIT Lincoln Laboratory
Slide-11

Modeling of Power Law Graphs
Adjacency Matrix Vertex In Degree Distribution

Power Law

•

Real world data (internet, social networks, …) has connections on all
scales (i.e power law)

 •

Can be modeled with Kronecker

Graphs: G⊗k

= G⊗k-1

⊗

G
–

Where “⊗”denotes the Kronecker

product of two matrices

•

Real world data (internet, social networks, …) has connections on all
scales (i.e power law)

•

Can be modeled with Kronecker

Graphs: G⊗k

= G⊗k-1

⊗

G
–

Where “⊗”denotes the Kronecker

product of two matrices

In Degree
N

um
be

r o
f V

er
tic

es

Presenter
Presentation Notes
Real world data (internet, social networks, …) has connections on all scales (i.e power law).
These data can be modeled with Kronecker Graphs: Gk = Gk-1 G

MIT Lincoln Laboratory
Slide-12

Kronecker

Products and Graph

Kronecker

Product
•

Let B be a NB

xNB

matrix
•

Let C be a NC

xNC

matrix
•

Then the Kronecker

product of B and C will produce a
NB

NC

xNB

NC

matrix A:

Kronecker

Graph (Leskovec

2005 & Chakrabati

2004)
•

Let G be a NxN

adjacency matrix
•

Kronecker

exponent to the power k is:

Presenter
Presentation Notes
Definition of Kronecker produce and Kronecker Graph.

MIT Lincoln Laboratory
Slide-13

Kronecker

Product of a Bipartite Graph

•

Fundamental result [Weischel

1962] is that the Kronecker

product of
two complete bipartite graphs is two complete bipartite graphs

 •

More generally

•

Fundamental result [Weischel

1962] is that the Kronecker

product of
two complete bipartite graphs is two complete bipartite graphs

•

More generally

⊗ =P

⊗ =P

B(5,1) ⊗ =PB(3,1)
B(15,1)

∪
B(3,5)

Equal with
the right

permutation

Presenter
Presentation Notes
Graph Kronecker Product. Complementary representations of the Kronecker product of two graphs.

MIT Lincoln Laboratory
Slide-14

Degree Distribution of Bipartite
Kronecker

Graphs

•

Kronecker

exponent of a bipartite graph produces many
independent bipartite graphs

•

Only k+1 different kinds of nodes in this graph, with degree
distribution

Presenter
Presentation Notes
Kronecker exponent of a bipartite graph produces many independent bipartite graphs.

MIT Lincoln Laboratory
Slide-15

Explicit Degree Distribution

•

Kronecker

exponent
of bipartite graph
naturally produces
exponential
distribution

•

Provides a natural
framework for
modeling
“background”

and
“foreground”

graph
signatures

•

Detection theory for
graphs?

B(n=5,1)⊗k=10

B(n=10,1)⊗k=5

lo
g n

(N
um

be
ro

f V
er

tic
es

)

logn

(Vertex

Degree)

slope=-1

slope=-1

Presenter
Presentation Notes
Theoretical Degree Distribution. Degree distribution derived from the Kronecker product of bipartite graphs. The slope over any symmetric interval is always -1.

MIT Lincoln Laboratory
Slide-16

Reference

Graph Algorithms
in the Language of

Linear Algebra

Jeremy Kepner and
John Gilbert
(editors)

•

Book: “Graph Algorithms in the Language of
Linear Algebra”

•

Editors: Kepner (MIT-LL) and Gilbert (UCSB)
•

Contributors

–

Bader (Ga

Tech)
–

Chakrabart

(CMU)
–

Dunlavy

(Sandia)
–

Faloutsos

(CMU)
–

Fineman

(MIT-LL & MIT)
–

Gilbert (UCSB)
–

Kahn (MIT-LL & Brown)
–

Kegelmeyer

(Sandia)
–

Kepner (MIT-LL)
–

Kleinberg (Cornell)
–

Kolda

(Sandia)
–

Leskovec

(CMU)
–

Madduri

(Ga

Tech)
–

Robinson (MIT-LL & NEU), Shah (UCSB)

Presenter
Presentation Notes
Book to be published by SIAM on this topic.

MIT Lincoln Laboratory
Slide-17

•

Post Detection Processing
•

Sparse Matrix Duality
•

Approach

Outline

•

Introduction

•

Power Law Graphs

•

Graph Benchmark

•

Results

•

Summary

Presenter
Presentation Notes
Outline Slide

MIT Lincoln Laboratory
Slide-18

Graph Processing Kernel
 -Vertex Betweenness

Centrality-

1 2

3

4 7

6

5

Algorithm Description

1. Starting at vertex v

•

compute shortest paths to all other vertices

•

for each reachable vertex, for each path it
appears on, assign a token

2. Repeat for all vertices

3. Accumulate across all vertices

Rules for adding tokens (betweenness

value) to
vertices

•

Tokens are not added to start or end of the
path

•

Tokens are normalized by the number of
shortest paths between any two vertices

Betweenness

centrality is a measure for estimating importance of a vertex in a graph Betweenness

centrality is a measure for estimating importance of a vertex in a graph

Graph traversal starting at vertex 1

1. Paths of length 1
•

Reachable vertices: 2, 4

2. Paths of length 2
•

Reachable vertices: 3, 5, 7
•

Add 2 tokens to: 2 (5, 7)
•

Add 1 token to: 4 (3)

3. Paths of length 3
•

Reachable vertex: 6 (two paths)
•

Add .5 token to: 2, 5
•

Add

.5 token to: 4, 3

Vertices that appear on most
shortest paths have the highest
betweenness

centrality measure

Vertices that appear on most
shortest paths have the highest
betweenness

centrality measure

Presenter
Presentation Notes
Betweenness centrality algorithm on a simple graph.

MIT Lincoln Laboratory
Slide-19

Array Notation

•

Data types
–

Reals: Integers: Booleans:
–

Postitive

Integers:

+

•

Vectors (bold lowercase): a : N

•

Matrices (bold uppercase): A : NxN

•

Tensors (script bold uppercase): A : NxNxN

•

Standard matrix multiplication

A B = A +.* B

•

Sparse matrix: A : S(N)xN

•

Parallel matrix: A : P(N)xN

Presenter
Presentation Notes
Mathematical array notation for describing algorithms.

MIT Lincoln Laboratory
Slide-20

Matrix Algorithm

Sparse
Matrix-Matrix
Multiply

Declare Data
Structures
Loop over
vertices

Shortest
paths

Rollback
& Tally

Presenter
Presentation Notes
Matrix implementation of graph theory benchmark.

MIT Lincoln Laboratory
Slide-21

Parallel Algorithm

Change
matrices to
parallel
arrays

Parallel Sparse
Matrix-Matrix
Multiply

Presenter
Presentation Notes
Parallel matrix implementation of graph theory benchmark.

MIT Lincoln Laboratory
Slide-22

Complexity Analysis

•

Do all vertices at once (i.e. |v|=N)
–

N = # vertices, M = # edges, k = M/N
•

Algorithm has two loops each containing dmax

sparse matrix
multiplies. As the loop progresses the work done is

 d=1

(2kM)
 d=2

(2k2M) -

(2kM)
 d=3

(2k3M -

2k2M) -

(2k2M -

2kM)
 …

•

Summing these terms for both loops and approximating the graph
diameter by dmax

≈

logk

(N) results in a complexity
4 kdmax

M ≈

4 N M

•

Time to execute is
TBC

≈

4 N M / (e S)
where S = processor speed, e = sparse matrix multiply efficiency

•

Official betweenness

centrality performance metric is Traversed
Edges Per Second (TEPS)

TEPS ≡

NM/TBC

≈

(e S) / 4
•

Betweenness

Centrality tracks Sparse Matrix multiply performance•

Betweenness

Centrality tracks Sparse Matrix multiply performance

Presenter
Presentation Notes
Betweenness centrality benchmark track sparse matrix multiply performance.

MIT Lincoln Laboratory
Slide-23

•

Post Detection Processing
•

Sparse Matrix Duality
•

Approach

Outline

•

Introduction

•

Power Law Graphs

•

Graph Benchmark

•

Results

•

Summary

Presenter
Presentation Notes
Outline Slide

MIT Lincoln Laboratory
Slide-24

Matlab

Implementation

•

Array code is very
compact

•

Lingua franca of
DoD

engineering
community

•

Sparse matrix
matrix multiply is
key operation

function BC = BetweennessCentrality(G,K4approx,sizeParts)
declareGlobals;
A = logical(mod(G.adjMatrix,8) > 0);
N = length(A); BC = zeros(1,N); nPasses = 2^K4approx;
numParts = ceil(nPasses/sizeParts);
for(p = 1:numParts)

BFS = []; depth = 0;
nodesPart = ((p-1).*sizeParts + 1):min(p.*sizeParts,N);
sizePart = length(nodesPart);
numPaths = accumarray([(1:sizePart)',nodesPart']…

,1,[sizePart,N]);
fringe = double(A(nodesPart,:));
while nnz(fringe) > 0

depth = depth + 1;
numPaths = numPaths + fringe;
BFS(depth).G = logical(fringe);
fringe = (fringe * A) .* not(numPaths);

end
[rows cols vals] = find(numPaths);
nspInv = accumarray([rows,cols],1./vals,[sizePart,N]);
bcUpdate = ones(sizePart,N);
for depth = depth:-1:2

weights = (BFS(depth).G .* nspInv) .* bcUpdate;
bcUpdate = bcUpdate + ...

((A * weights')' .* BFS(depth-1).G) .* numPaths;
end
bc = bc + sum(bcUpdate,1);

end
bc = bc - nPasses;

function BC = BetweennessCentrality(G,K4approx,sizeParts)
declareGlobals;
A = logical(mod(G.adjMatrix,8) > 0);
N = length(A); BC = zeros(1,N); nPasses = 2^K4approx;
numParts = ceil(nPasses/sizeParts);
for(p = 1:numParts)

BFS = []; depth = 0;
nodesPart = ((p-1).*sizeParts + 1):min(p.*sizeParts,N);
sizePart = length(nodesPart);
numPaths = accumarray([(1:sizePart)',nodesPart']…

,1,[sizePart,N]);
fringe = double(A(nodesPart,:));
while nnz(fringe) > 0

depth = depth + 1;
numPaths = numPaths + fringe;
BFS(depth).G = logical(fringe);
fringe = (fringe * A) .* not(numPaths);

end
[rows cols vals] = find(numPaths);
nspInv = accumarray([rows,cols],1./vals,[sizePart,N]);
bcUpdate = ones(sizePart,N);
for depth = depth:-1:2

weights = (BFS(depth).G .* nspInv) .* bcUpdate;
bcUpdate = bcUpdate + ...

((A * weights')' .* BFS(depth-1).G) .* numPaths;
end
bc = bc + sum(bcUpdate,1);

end
bc = bc - nPasses;

Presenter
Presentation Notes
Matlab implementation of the algorithm.

MIT Lincoln Laboratory
Slide-25

Matlab

Profiler Results

•

Betweenness

Centrality performance is dominated by sparse matrix
matrix multiply performance

•

Betweenness

Centrality performance is dominated by sparse matrix
matrix multiply performance

Presenter
Presentation Notes
Matlab profile results show that matrix multiply dominates computation.

MIT Lincoln Laboratory
Slide-26

Code Comparison

•

Software Lines of Code (SLOC) are a standard metric for
comparing different implementations

Language SLOCs Ratio to C
C 86 1.0
C + OpenMP

(parallel) 336 3.9
Matlab 28 1/3.0
pMatlab

(parallel) 50 (est) 1/1.7 (est)
pMatlabXVM

(parallel out-of-core) 75 (est) 1 (est)

•

Matlab

code is small than C code be the expected amount
•

Parallel Matlab

and parallel out-of-core are expected to be smaller than
serial C code

•

Matlab

code is small than C code be the expected amount
•

Parallel Matlab

and parallel out-of-core are expected to be smaller than
serial C code

Presenter
Presentation Notes
SLOC estimates for different implementations of the benchmark.

MIT Lincoln Laboratory
Slide-27

Betweenness

Centrality Performance
 -Single Processor-

SSCA#2 Kernel 4 (Betweenness

Centrality on Kronecker

Graph)

Data Courtesy of Prof. David Bader & Kamesh

Madduri

(Georgia Tech)

(Traversed Edges Per Second)

•

Canonical graph based implementations
•

Performance limited by low processor efficiency (e ~ 0.001)

–

Cray Multi Threaded Architecture (1997) provides a modest improvement

•

Canonical graph based implementations
•

Performance limited by low processor efficiency (e ~ 0.001)

–

Cray Multi Threaded Architecture (1997) provides a modest improvement

Nedge

=8M
Nvert

=1M
Napprox

=256

Matlab Matlab

achieves
•

50% of C

•

50% of sparse matmul
•

No hidden gotchas

Matlab

achieves
•

50% of C

•

50% of sparse matmul
•

No hidden gotchas

Presenter
Presentation Notes
Matlab implementation compared to C implementation on various architectures.

MIT Lincoln Laboratory
Slide-28

COTS Serial Efficiency

PowerPC x86

1000x

Dense
Operations

Sparse
Operations

Problem Size (fraction of max)

1

10-3

110-6

O
ps

/s
ec

/W
at

t (
ef

f)

•

COTS processors are 1000x more efficient on sparse operations than
dense operations

•

COTS processors are 1000x more efficient on sparse operations than
dense operations

Presenter
Presentation Notes
COTS processors are inefficient on sparse operations.

MIT Lincoln Laboratory
Slide-29

Parallel Results (canonical approach)

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

0 10 20 30 40

15

10

5

0

Pa
ra

lle
l S

pe
ed

up

Processors

Graph
Operations

Dense Operations

•

Graph algorithms scale poorly because of high communication
requirements

 •

Existing hardware has insufficient bandwidth

•

Graph algorithms scale poorly because of high communication
requirements

•

Existing hardware has insufficient bandwidth

Presenter
Presentation Notes
Graph operations do not scale nearly as well as dense algorithms.

MIT Lincoln Laboratory
Slide-30

Performance vs

Effort

0.1

1

10

100

1000

0.1 1 10

R
el

at
iv

e
Pe

rf
or

m
an

ce
Sp

ar
se

 M
at

rix
 (O

ps
/S

ec
)

or
 T

EP
S

Relative Code Size (i.e Coding Effort)

Matlab

C+OpenMP
(parallel)

pMatlab
on Cluster

•

Array (matlab) implementation is short and efficient
–

1/3 the code of C implementation (currently 1/2 the performance)
•

Parallel sparse array implementation should match parallel C
performance at significantly less effort

•

Array (matlab) implementation is short and efficient
–

1/3 the code of C implementation (currently 1/2 the performance)
•

Parallel sparse array implementation should match parallel C
performance at significantly less effort

C

Presenter
Presentation Notes
Performance vs effort for different implementations.

MIT Lincoln Laboratory
Slide-31

Why COTS Doesn’t Work?

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages
CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

Standard COTS
Computer Architecture

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

Network Switch

Corresponding
Memory Hierarchy

•

Standard COTS architecture requires algorithms to have regular data
access patterns

 •

Graph algorithms are irregular, caches don’t work and even make the
problem worse (moving lots of unneeded data)

•

Standard COTS architecture requires algorithms to have regular data
access patterns

•

Graph algorithms are irregular, caches don’t work and even make the
problem worse (moving lots of unneeded data)

2nd fetch
is “free”

re
gu

la
r a

cc
es

s
pa

tte
rn

irr
eg

ul
ar

 a
cc

es
s

pa
tte

rn2nd fetch
is costly

Presenter
Presentation Notes
Standard parallel computer architecture results in a steep memory hierarchy.

MIT Lincoln Laboratory
Slide-32

Summary
 Embedded Processing Paradox

•

Front end data rates are much higher
•

However, back end correlation times are longer, algorithms
are more complex and processor efficiencies are low

•

If current processors scaled (which they don’t), required
power for back end makes even basic graph algorithms
infeasible for embedded applications

Front End Back End
Data input rate Gigasamples/sec Megatracks/day
Correlation time seconds months
Algorithm complexity O(N log(N)) O(N M)
Processor Efficiency 50% 0.05%
Desired latency seconds minutes
Total Power ~1 KWatt >100 KWatt

Need fundamentally new technology approach for graph-based processingNeed fundamentally new technology approach for graph-based processing

Presenter
Presentation Notes
In the past, the computing requirements of embedded sensor processing systems have been dominated by “Front End” pre-detection processing functions (e.g. equalization, sub-banding, beamforming, …). These Front End computing requirements will continue to be formidable as sensor bandwidths increase. However, as the sensor bandwidth increases, the number of targets grows and the “Back End” post-detection processing requirements grow non-linearly in comparison with the Front End computing requirements. A number of factors contribute to this. First, the timeframe over which data needs to be correlated is much larger on Back End processing (months vs seconds). Second, the algorithm complexity of back end processing is much higher: O(N M) vs O(N lg(N). Finally, the processor efficiency for Back End operations is much lower.
 Combining these data we can compute the total power requirements for a typical sensor.

Front End Processing on a RISC processor:
 (1 Gigasample/sec) (3 stages * 5*lg(10^9) operations/sample)/(0.2)/(1 Gigaflop/Watt) = 900 Watts
Back End Processing on a RISC processor:
 (10^8 Tracks)(10^4 Events)/(1000 second latency)/(10^6 Traversed Edges Per Second Per 100 Watts) = 100 Kwatts
In other words, 1000 RISC processors would be required to do this processing *if* the RISC processors scaled, which they do not.

MIT Lincoln Laboratory
Slide-33

Backup Slides

Presenter
Presentation Notes
Backup Slides.

MIT Lincoln Laboratory
Slide-34

Motivation: Graph Processing for ISR

ISR Sensor

Networking

ISR Sensor

Networking

SAR and GMTISAR and GMTI

EO, IR, Hyperspectral,
Ladar

EO, IR, Hyperspectral,
Ladar

SIGINTSIGINT
Integrated

Sensing &

Decision

Support

Tracking &

Exploitation

Algorithms Signal Processing Graph
Data Dense Arrays Graphs
Kernels FFT, FIR, SVD, … BFS, DFS, SSSP, …
Parallelism Data, Task, … Hidden
Compute Efficiency 10% -

100% < 0.1%

•

Post detection processing
relies on graph algorithms

–

Inefficient on COTS hardware
–

Difficult to code in parallel

•

Post detection processing
relies on graph algorithms

–

Inefficient on COTS hardware
–

Difficult to code in parallel

FFT = Fast Fourier Transform, FIR = Finite Impulse Response, SVD

= Singular Value Decomposition
BFS = Breadth First Search, DFS = Depth First Search, SSSP = Single Source Shortest Paths

Presenter
Presentation Notes
Sensor processing divided into signal processing and graph processing.

	Linear Algebraic Graph Algorithms� for Back End Processing
	Outline
	Statistical Network Detection
	Graphs as Matrices
	Distributed Array Mapping
	Algorithm Comparison
	A few DoD Applications using Graphs
	Approach: Graph Theory Benchmark
	Outline
	Power Law Graphs
	Modeling of Power Law Graphs
	Kronecker Products and Graph
	Kronecker Product of a Bipartite Graph
	Degree Distribution of Bipartite Kronecker Graphs
	Explicit Degree Distribution
	Reference
	Outline
	Graph Processing Kernel�-Vertex Betweenness Centrality-
	Array Notation
	Matrix Algorithm
	Parallel Algorithm
	Complexity Analysis
	Outline
	Matlab Implementation
	Matlab Profiler Results
	Code Comparison
	Betweenness Centrality Performance� -Single Processor-
	COTS Serial Efficiency
	Parallel Results (canonical approach)
	Performance vs Effort
	Why COTS Doesn’t Work?
	Summary�Embedded Processing Paradox
	Backup Slides
	Motivation: Graph Processing for ISR

