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Introduction1 
 
The Volterra kernel is a multidimensional, polynomial ex-
tension to the linear filter that can be used to model arbi-
trary nonlinear systems.  While theoretically significant, its 
complexity grows exponentially with polynomial order [1]. 
For input x(n), its output is given by 
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Due to its high computational complexity, most practical 
polynomial filters consider only subsets of the kernel. A 
memory polynomial [2], for example, uses only the 
Volterra kernel coefficients along the main diagonal, i.e., 
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Other architectures such as the diagonal coordinate system 
(DCS) [3] and horizontal coordinate system (HCS) [4] use 
one-dimensional subkernels as building blocks for a larger 
nonlinear system which are chosen to achieve high per-
formance and low computational complexity. 
 
In all of these cases, one-dimensional coefficient swaths of 
the kernel are used, taking advantage of the ability to per-
form fast one-dimensional convolutions. Using multi-
dimensional filters, however, has advantages. Filtering in 
multiple dimensions more easily addresses asymmetric 
nonlinearities that sometimes occur in practice. To general-
ize the division of the Volterra kernel to use multidimen-
sional subkernels, we have created the cube coefficient sub-
space (CCS) architecture [5], which builds a polynomial 
signal processor with small nonlinear filters of arbitrary 
dimension and polynomial order. This allows us to adapt 
our system in more dimensions with fewer components, 
which leads to lower computational complexity for a given 
modeling error performance criterion. 
 
In this abstract, we present the CCS architecture and use it 
to create a nonlinear digital predistorter (NDP) for reducing 
adjacent channel interference (ACI) caused by a solid state 
power amplifier (PA) in a Q-band satellite communication 
(SATCOM) system. For narrowband applications, a suffi-
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cient NDP can be implemented with a computationally effi-
cient look-up table (LUT), but as bandwidths increase, the 
memory effects imparted by the PA increase, and LUT per-
formance degrades. On our amplifier of interest, our CCS 
NDP achieves greater ACI reduction than an LUT with 
lower computational complexity than other pruned Volterra 
kernel architectures. 
 
Cube Coefficient Subspaces 
 
The CCS architecture allows the user to partition the com-
putationally complex, overparameterized Volterra kernel 
into smaller subkernels to increase computational efficiency 
without sacrificing performance. The components of the 
architecture are small hypercubes of arbitrary dimension 
within the full Volterra kernel coefficient space. The fact 
that the subkernels are multidimensional allows us to miti-
gate certain kinds of nonlinearities more efficiently than 
one-dimensional subkernels like HCS and DCS. 
 
A pth-order CCS component performs a small d-
dimensional convolution on d-fold products of the input 
signal. A CCS component has associated with it a polyno-
mial order p, a dimension d, a memory depth M, and delays 
αℓ, for 1 ≤ ℓ ≤ p. The output of a CCS component is given 
by 
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In Figure 1 we show the hardware layout of a 2-
dimensional 5th-order CCS component with memory 3 in 
each dimension.  
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Figure 1:  Hardware View of a CCS Component 
 
We have also created a diagonal analog to CCS, the diago-
nal cube coefficient subspace (CCS-D), where each compo-



nent is a parallelepiped of arbitrary dimension in the full 
coefficient space. This allows us to efficiently create a 
nonlinear system that resides mostly along diagonal swaths 
of the Volterra coefficient space, but also maintain the 
benefits of multidimensional filtering. The output of a CCS-
D with component memory M, dimension d and order p is 
given by 
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A multidimensional CCS component is less computation-
ally efficient per coefficient than a 1-dimensional subker-
nel. A CCS component with memory M, dimension d and 
order p will have Md coefficients and will require 

 multiplications and Md additions. An 
HCS or DCS component with Md coefficients also requires 
Md additions, but requires only Md+p-1 multiplications. 
Indeed, as we move into higher dimensions, our complexity 
is exponential with respect to the dimension of our subker-
nel. For the nonlinearities we are interested in attacking, 
however, we can still achieve a less computationally com-
plex NDP because we can use fewer components to main-
tain the same level of performance. 
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Simulation and Results 
 
We use the inverse Volterra method [6] in conjunction with 
the greedy search method described in [7] to identify a CCS 
configuration for our NDP. In the greedy selection process 
the multidimensional nature of CCS components is advan-
tageous; we can adapt in multiple dimensions from the first 
component selected. 
 
In this abstract, we are applying our NDP at baseband, and 
as such we use the complex baseband version of the 
Volterra kernel [8], i.e., letting O(P) = {1, 3, …, P} 
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We used the CCS architecture to derive a nonlinear digital 
predistorter for a model of a Q-band power amplifier (PA) 
whose response to a communication signal is shown in Fig-
ure 2. Note the asymmetry in the spectral regrowth to the 
left and the right of the signal. This suggests that multidi-
mensional filtering will be advantageous. As demonstrated 
in the figure, our NDP achieves 15 dB greater ACI im-
provement than an LUT. 
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Figure 2: Q-band PA Output 

We derived NDPs for this PA using various architectures: 
two HCS/DCS architecture, one with 4 coefficients and one 
with 7 coefficients per component; 2- and 3-dimensional 
CCS/CCS-D architectures, each with memory depth of 2 
samples in each dimension (4 and 8 coefficients per com-
ponent, respectively); and a “coordinate-system agnostic” 
architecture, where at each iteration we select a single coef-
ficient from the Volterra kernel. We added components 
until the NDP achieved at least 28 dB improvement in mean 
square error (after which performance starts to level off). 
The results of this experiment are shown in Table 1. Due to 
the asymmetry in the nonlinear response, multidimensional 
filtering has a positive impact. For a comparable number of 
coefficients per component, the CCS/CCS-D architectures 
outperform HCS/DCS. While we can achieve the same 
amount of improvement with fewer coefficients, as we see 
in the “agnostic” case, regularized components allow us to 
exploit closeness in the kernel and avoid redundant compu-
tations, thus reducing the real-time complexity. 
  

Table 1: Computational Requirements to achieve 28 dB  
Improvement in MSE 

Architecture Operations Per 
Sample 

Number of  
Components 

Agnostic 77 Mult., 14 Add. 15 
7-coef. HCS/DCS 92 Mult., 55 Add. 8 
3-D CCS/CCS-D 66 Mult., 31 Add. 4 
4-coef. HCS/DCS 72 Mult., 35 Add. 9 
2-D CCS/CCS-D 47 Mult., 19 Add. 5 
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