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Abstract1 
Results from a multicore parallelization study of a target 
application, the Complex Ambiguity Function (CAF)[1], 
are presented.  The CAF is a key algorithm in performing 
time and frequency delay of arrival calculations for actively 
sensed objects.  The main algorithmic component of the 
CAF  involves computing multiple cross-correlations over a 
range of frequency and time shifts with Fast Fourier 
Transforms.  Also additional pre-processing of the input 
signals with Hilbert transforms and FIR filters using FFTs 
is performed.  To assess the efficacy of our parallelization 
effort two workload-driven metrics were calculated, a fixed 
workload-constrained (WC) metric and a modified linear-
scaled workload time-constrained (MLSWTC) metric. By 
taking advantage of the loop-level parallelism present 
within the CAF Processing Chain via OpenMP parallel 
directives, parallel speedups of 75% and greater for a dual-
quad core Intel Xeon system were achieved. 

Hardware and Software2 
A dual-quad core system comprised of Intel Xeon E5335 
“Clovertown” processors was used for our workload-driven 
evaluation.   Each “Clovertown” processor runs at a 
2.0GHz clock rate with a 2x4MB shared L2 cache and split 
32KB L1 instruction and data caches along with a quad-
pumped 1333 MHz Front-Side Bus interface resulting in a 
peak 10.6 GB/sec bandwidth between the processors. Both 
processors shared 8GB of system memory and the OS used 
was 64-bit CentOS5.  Results reported used the Intel ICC 
v.10.0 compiler along with Intel’s OpenMP runtime, 
OpenMP*, based upon the OpenMP v.2.5 API standard and 
the FFT library supplied with v. 10.0.3.20 of Intel’s MKL 
package. 

CAF Processing Chain and Workload 
Parameterization3 
Figure 1 illustrates the required processing steps in order to 
calculate the time and frequency delay of arrival for two 
input streams.  Specifically, there are four steps involved.  
Each real-valued input stream is transformed into a 
complex-valued stream by a Hilbert transform. Then each 
transformed complex-valued stream is broken up into k 
frequency channels via an FIR filter process.  Pairs of 
frequency channels are then combined in a time-shifted 
fashion to form “caf surfaces” from which the time and 
frequency delay of arrival values of objects of interest 
correspond to peaks on the caf surface.  Mathematically, a 
caf surface formed from a pair of transformed streams can 
be represented as 
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Equation 1: caf surface 
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where m is the frequency shift and ν is the time shift for the 
caf surface corresponding to the kth frequency band.  256 
channels were used in our implementation. The time length 
L of the portion of the signal used in Equation 1 is bounded 
by the amount of available data and the minimum signal-to-
noise ratio (SNR) one wishes to detect.  For the results 
reported here, the SNR is -10dB, corresponding to a length 
or block size of 4096.  

 
Figure 1: CAF Processing Chain 

We parameterized the computational workload of the CAF 
Processing Chain in two ways.  First, usual 
implementations of the CAF Processing Chain use a signal 
power culling optimization to avoid computing the 
computationally expensive caf surfaces when the input 
signal power is not large enough.  We term this the 
Nominal Surface processing case.  We also chose to 
compute all the possible caf surfaces that could be formed, 
providing for an upper bound on the overall CAF 
Processing Chain runtime.  This case is termed the All 
Surface processing case.  Second, the nominal input stream 
size was 6.25 Megasamples (MS) where 1MS = 220 
samples.  For a 6.25 MS input signal, there were a total 
32768 blocks.  We varied the input size in steps of 6.25 MS 
up to a maximum of 31.25MS. For physical plausibility, the 
maximum  input signal stream was not scaled more than 5 
times the original input size. It was observed that the serial 
runtime scaled linearly with linear scaling in input signal 
stream size. 
Parallelization 
The majority of work within the HILBERT TRANSFORM and 
CHANNELIZE modules are each contained within a for loop 
iterating through all the blocks within the input stream.  



Both for loops span the length of the module and contain 
FFT calls.  Also, there are no data dependencies between 
different iterations of the loop.  This type of loop structure 
is ideal to be performed in parallel using a #pragma omp 
parallel for iterative workshare construct.  In 
addition, the CAF and DETECT modules are contained 
within a doubly nested for loop, which iterates over all 
possible channels and blocks per channel.  Again, there are 
no data dependencies between different loop iterations 
allowing for the use of a parallel for construct.  One 
could parallelize within the CAF module solely instead of 
outside the module, however we found that the best parallel 
scaling was obtained when parallelizing at the outermost 
level.  
Workload-Driven Parallelization Metrics[2] 
To assess the efficacy our parallelization effort and the 
ability of the dual-quad core Xeon system to scale, two 
workload-driven metrics were calculated.  The first, a fixed 
workload-constrained (WC) metric, examines the ability of 
a parallel system to minimize overall wall-clock time 
through the use of multiple cores. A speedup value is 
calculated as shown in Equation 2. 
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SpeedupWC(p cores) =  
Time 1 core( )

Time(p cores)
 

Equation 2: Workload-Constrained (WC) Speedup 

For the dual-quad core system used, a best-case parallel 
scaling over 8 cores would result in a speedup of 8.0.  A 
worst-case scaling would result in a speedup of 1.0, i.e. the 
use of additional cores did not decrease overall wall-clock 
time.   
A second workload-driven metric examines the ability of a 
parallel system to maintain a uni-core runtime as the 
workload is increased in proportion to the number of cores 
used.  This is a time-constrained scaling, or “scaled-
speedup” model as first proposed by Gustafson[3].  Since 
the dual-quad core system used has 8 cores while the input 
signal stream could only scale by a factor of 5,  a  modified 
linear-scaled workload time-constrained (MLSWTC) 
speedup metric is proposed. The speedup metric is  
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SpeedupMLSWTC p cores, min p,ubism( ) input size( ) =

       
Time 1 core, 1 input size( )

Time p cores, min p,ubism( ) input size( )
,

 
Equation 3: MLSWTC Speedup 

where ubism is the upper-bound input size multiple of the 
base input size, which for the purposes of this study is 5.   A 
best-case MLSWTC speedup for (5 cores, 5 input size) is 
1.0, indicating that 5 times the workload can be processed 
in the same amount of time as the base input workload 
when using 5 cores.  For a (8 cores, 5 input size) case, the 
best-case MLSWTC speedup is 1.6.  A worst-case 
MLSWTC speedup for (8 cores, 5 input size) is .2 .   

Results 
The WC speedup results obtained for an input size of 
6.25MS, -10dB SNR and both the Nominal Surface and All 
Surface cases are presented below. 

 
Figure 2: Nominal Surface and All Surface WC Speedup 

As seen in Figure 2, a speedup of 5.96 for 8 cores was 
obtained for the Nominal Surface case and 7.22 for 8 cores 
with the All Surface cases.  The regularity of processing 
with the All Surface case allows for a better overall 
speedup.  The uni-core wall-clock time was 5.36 seconds 
for the Nominal Surface case and 37.38 seconds for the All 
Surface case. 

The MLSWTC speedup results for both surface processing 
cases and a SNR of -10dB is shown below. 

 
Figure 3: Nominal Surface and All Surface MLSWTC 
Speedup 

For both cases, the 31.25MS input size is processed with 6 
cores in less time than the 6.25MS uni-processor time.  
Again, the regularity of processing with the All Surface 
case provides for better overall scalability. 
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