
Multicore Acceleration of the Complex Ambiguity Function
Douglas P. Enright, Eric M. Dashofy, Michael AuYeung, R. Scott Boughton, J. Matt Clark, Ronald Scrofano, Jr.

The Aerospace Corporation
{Douglas.P.Enright, edashofy, mauyeung, RScott.Boughton, JMatt.Clark, Ronald.Scrofano}@aero.org

Abstract1
Results from a multicore parallelization study of a target
application, the Complex Ambiguity Function (CAF)[1],
are presented. The CAF is a key algorithm in performing
time and frequency delay of arrival calculations for actively
sensed objects. The main algorithmic component of the
CAF involves computing multiple cross-correlations over a
range of frequency and time shifts with Fast Fourier
Transforms. Also additional pre-processing of the input
signals with Hilbert transforms and FIR filters using FFTs
is performed. To assess the efficacy of our parallelization
effort two workload-driven metrics were calculated, a fixed
workload-constrained (WC) metric and a modified linear-
scaled workload time-constrained (MLSWTC) metric. By
taking advantage of the loop-level parallelism present
within the CAF Processing Chain via OpenMP parallel
directives, parallel speedups of 75% and greater for a dual-
quad core Intel Xeon system were achieved.

Hardware and Software2
A dual-quad core system comprised of Intel Xeon E5335
“Clovertown” processors was used for our workload-driven
evaluation. Each “Clovertown” processor runs at a
2.0GHz clock rate with a 2x4MB shared L2 cache and split
32KB L1 instruction and data caches along with a quad-
pumped 1333 MHz Front-Side Bus interface resulting in a
peak 10.6 GB/sec bandwidth between the processors. Both
processors shared 8GB of system memory and the OS used
was 64-bit CentOS5. Results reported used the Intel ICC
v.10.0 compiler along with Intel’s OpenMP runtime,
OpenMP*, based upon the OpenMP v.2.5 API standard and
the FFT library supplied with v. 10.0.3.20 of Intel’s MKL
package.

CAF Processing Chain and Workload
Parameterization3
Figure 1 illustrates the required processing steps in order to
calculate the time and frequency delay of arrival for two
input streams. Specifically, there are four steps involved.
Each real-valued input stream is transformed into a
complex-valued stream by a Hilbert transform. Then each
transformed complex-valued stream is broken up into k
frequency channels via an FIR filter process. Pairs of
frequency channels are then combined in a time-shifted
fashion to form “caf surfaces” from which the time and
frequency delay of arrival values of objects of interest
correspond to peaks on the caf surface. Mathematically, a
caf surface formed from a pair of transformed streams can
be represented as

DISTRIBUTION STATEMENT: Approved for public release;
distribution is unlimited.

!

Ak m,"() = Sa,k l + "() # Sb,k
*
l() # e$ j 2%ml /L

l= 0

L$1

& ,

Equation 1: caf surface

!

A
k
m,"()

where m is the frequency shift and ν is the time shift for the
caf surface corresponding to the kth frequency band. 256
channels were used in our implementation. The time length
L of the portion of the signal used in Equation 1 is bounded
by the amount of available data and the minimum signal-to-
noise ratio (SNR) one wishes to detect. For the results
reported here, the SNR is -10dB, corresponding to a length
or block size of 4096.

Figure 1: CAF Processing Chain

We parameterized the computational workload of the CAF
Processing Chain in two ways. First, usual
implementations of the CAF Processing Chain use a signal
power culling optimization to avoid computing the
computationally expensive caf surfaces when the input
signal power is not large enough. We term this the
Nominal Surface processing case. We also chose to
compute all the possible caf surfaces that could be formed,
providing for an upper bound on the overall CAF
Processing Chain runtime. This case is termed the All
Surface processing case. Second, the nominal input stream
size was 6.25 Megasamples (MS) where 1MS = 220
samples. For a 6.25 MS input signal, there were a total
32768 blocks. We varied the input size in steps of 6.25 MS
up to a maximum of 31.25MS. For physical plausibility, the
maximum input signal stream was not scaled more than 5
times the original input size. It was observed that the serial
runtime scaled linearly with linear scaling in input signal
stream size.
Parallelization
The majority of work within the HILBERT TRANSFORM and
CHANNELIZE modules are each contained within a for loop
iterating through all the blocks within the input stream.

Both for loops span the length of the module and contain
FFT calls. Also, there are no data dependencies between
different iterations of the loop. This type of loop structure
is ideal to be performed in parallel using a #pragma omp
parallel for iterative workshare construct. In
addition, the CAF and DETECT modules are contained
within a doubly nested for loop, which iterates over all
possible channels and blocks per channel. Again, there are
no data dependencies between different loop iterations
allowing for the use of a parallel for construct. One
could parallelize within the CAF module solely instead of
outside the module, however we found that the best parallel
scaling was obtained when parallelizing at the outermost
level.
Workload-Driven Parallelization Metrics[2]
To assess the efficacy our parallelization effort and the
ability of the dual-quad core Xeon system to scale, two
workload-driven metrics were calculated. The first, a fixed
workload-constrained (WC) metric, examines the ability of
a parallel system to minimize overall wall-clock time
through the use of multiple cores. A speedup value is
calculated as shown in Equation 2.

!

SpeedupWC(p cores) =
Time 1 core()

Time(p cores)

Equation 2: Workload-Constrained (WC) Speedup

For the dual-quad core system used, a best-case parallel
scaling over 8 cores would result in a speedup of 8.0. A
worst-case scaling would result in a speedup of 1.0, i.e. the
use of additional cores did not decrease overall wall-clock
time.
A second workload-driven metric examines the ability of a
parallel system to maintain a uni-core runtime as the
workload is increased in proportion to the number of cores
used. This is a time-constrained scaling, or “scaled-
speedup” model as first proposed by Gustafson[3]. Since
the dual-quad core system used has 8 cores while the input
signal stream could only scale by a factor of 5, a modified
linear-scaled workload time-constrained (MLSWTC)
speedup metric is proposed. The speedup metric is

!

SpeedupMLSWTC p cores, min p,ubism() input size() =

Time 1 core, 1 input size()

Time p cores, min p,ubism() input size()
,

Equation 3: MLSWTC Speedup

where ubism is the upper-bound input size multiple of the
base input size, which for the purposes of this study is 5. A
best-case MLSWTC speedup for (5 cores, 5 input size) is
1.0, indicating that 5 times the workload can be processed
in the same amount of time as the base input workload
when using 5 cores. For a (8 cores, 5 input size) case, the
best-case MLSWTC speedup is 1.6. A worst-case
MLSWTC speedup for (8 cores, 5 input size) is .2 .

Results
The WC speedup results obtained for an input size of
6.25MS, -10dB SNR and both the Nominal Surface and All
Surface cases are presented below.

Figure 2: Nominal Surface and All Surface WC Speedup

As seen in Figure 2, a speedup of 5.96 for 8 cores was
obtained for the Nominal Surface case and 7.22 for 8 cores
with the All Surface cases. The regularity of processing
with the All Surface case allows for a better overall
speedup. The uni-core wall-clock time was 5.36 seconds
for the Nominal Surface case and 37.38 seconds for the All
Surface case.

The MLSWTC speedup results for both surface processing
cases and a SNR of -10dB is shown below.

Figure 3: Nominal Surface and All Surface MLSWTC
Speedup

For both cases, the 31.25MS input size is processed with 6
cores in less time than the 6.25MS uni-processor time.
Again, the regularity of processing with the All Surface
case provides for better overall scalability.

References
[1] Stein, S., “Algorithms for Ambiguity Function
Processing”, IEEE Trans. Acoustics, Speech, and Signal
Proc. v. ASSP-29, p. 588-599 (1981).

[2] Culler., D.E. and Singh, J.P. with A. Gupta, “Parallel
Computer Architecture – A Hardware/Software Approach”,
Morgan Kaufmann Publishers, Inc. (1999).

[3] Gustafson, J.L., “Reevaluating Amdahl’s Law”, Comm.
ACM, v. 31, no. 5, p. 532-533 (1988).

