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Introduction1 
Over the past several years, graphics processing units 
(GPUs) have gained interest as general purpose highly 
parallel coprocessors.  Early adopters were forced to use 
traditional 3D graphics application programming interfaces 
(APIs) in order to access the computational power of the 
GPU.  This process of recasting general purpose problems 
into graphical terms can be time consuming and create 
obscure code.  The introduction of NVidia’s Compute 
Unified Device Architecture (CUDA) Framework, a C-
language development environment for NVidia GPUs, is 
designed to ease the burden placed on the general purpose 
GPU programmer.  In parallel with the CUDA release, 
NVidia also released implementations of the BLAS and 
FFT libraries for the GPU under the names CUBLAS and 
CUFFT, respectively. 

Previous research [1,2] has shown the vast computational 
power of GPUs for signal processing.  Modern radar signal 
processing is a data parallel operation that benefits from 
parallel processing architectures.  This investigation will 
focus on the real-world benefit of GPUs for radar pulse 
compression.  First, the performance of 1D and 2D FFTs on 
a GPU via CUFFT will be compared to a modern day 
multi-core CPU implementation using FFTW [3].  
Subsequently, these performance results will inform the 
implementation of two surrogate radar pulse compression 
chains, having differing processing complexity, which will 
also in turn be benchmarked similar to the FFTs. 

FFT Benchmarking Methodology 
The benchmarks to be presented are based on the fft_bench 
code found on the NVidia CUDA Developer forums [4].  
For benchmarking purposes fft_bench runs each test point 
32 times and chooses the trial with the fastest time to 
compute the number of FFTs possible per second.   

A modified version of fft_bench used during this study runs 
complex 1D and 2D transforms on the GPU using CUFFT, 
and 1D and 2D transforms on the CPU using FFTW.  The 
code tests multiple batch sizes (number of same size FFTs 
to be executed), and both in-place and out-of-place 
transforms are executed.  The FFTW planner was instructed 
to create multi-threaded plans in patient mode.  The timing 
results do not include planning time for either the GPU or 
the CPU.  The timing results do include the transfer time 
required to copy data to and from the GPU.  GPU results 
are measured using page-locked host memory to reduce 
transfer time. 
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Benchmarking was conducted on two dual-core AMD 
Opterons at 2.6 GHz with 16 GB of DDR2 RAM.  In the 
same machine, an EVGA GeForce 8800 Ultra 
SuperclockedTM video card at 1.6 GHz with 768 MB of 
DDR3 RAM was used for GPU benchmarking. 

Impact of Transfer Time 
As mentioned previously, the benchmarking code includes 
the time required to copy data from main system memory to 
the GPU for processing.  For numerically lightweight 
operations such as a 1D FFT, the time required for the 
transfer dwarfs the FFT computation time.  Figure 1 shows 
the time required to compute complex 1D fixed length 
FFTs with varying batch sizes and the time required to 
transfer the data to the GPU. 

 
Figure 1: FFT Execution Time including GPU Transfer Time 

Figure 1 shows that for short FFTs, the CPU can compute 
batch sizes up to 256 in the time required to copy the data 
to the GPU.  For larger FFTs there is margin between the 
time required for transfer and the CPU computation time.  
When such a margin exists, the GPU can sometimes 
transfer the data and compute the FFTs faster than the CPU. 

The results in Figure 1 show the timing for doing a single 
FFT on the GPU before returning the data to host memory, 
and suggest that data transfer time is significant.  For data 
parallel operations the GPU will in general perform better 
as the number of operations increases for a fixed transfer 
size.  Also, precomputing data that must then be transferred 
may not be as beneficial on the GPU as on other computing 
platforms.  These are important implementation details to 
be considered. 



FFT Benchmark Results 
At each test point (FFT and batch size) the maximum 
performance is chosen for each computational engine.1 
Portrayed in Figure 2 and elsewhere, the GPU speedup is 
defined as the ratio of GPU performance to the CPU 
performance.  Values greater than one indicate the GPU is 
faster, values less than one indicate the CPU is faster. 

 
Figure 2: 1D FFT GPU Speedup vs. FFT and Batch Size  

Figure 2: 1D FFT GPU Speedup vs. FFT and Batch Size 
expands on the results in Figure 1.  For 1D FFTs, the GPU 
shows an advantage on large power-of-two sized with the 
peak speedup around 2.5.  

 
Figure 3: 2D FFT GPU Speedup vs. FFT Size 

In Figure 3, 2D FFTs show a consistent advantage for the 
GPU, with the maximum speedup over 6.  The 2D FFT 
requires more operations than its 1D counterpart, and as 
such, the cost of data transfer is less of a performance 
penalty. 

Pulse Compression 
Pulse compression in radar is a combination of waveforms 
and processing that allows a long pulse to be transmitted 
while retaining the range resolution of a short pulse [5].  In 
what follows fast time refers to intra-pulse timing (sample 
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to sample), while slow time refers to inter-pulse timing (the 
time between the same sample in two consecutive pulses). 

The first pulse compression processor (Figure 4) is a 
traditional convolution theorem implementation.  The total 
operation count of this processing chain is similar to the 
operation count for a large 2D FFT, so GPU speedup 
similar to the 2D FFT is expected. 
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Figure 4: Traditional Pulse Compression 

The second pulse compression implementation is shown in 
Figure 5.  It adds complexity to enable spatially diverse 
processing of Doppler intolerant orthogonal waveforms: a 
slow-time FFT and Doppler correction prior to the fast-time 
FFT, and the convolution with multiple orthogonal replicas.  
The additional steps incur a large number of GPU-efficient 
operations, so it is expected that this processing chain 
should see significant speedup versus the CPU 
implementation. 

Doppler Replicas 
Correction

 
Figure 5: Doppler Intolerant Pulse Compression 
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