
Radar Pulse Compression Using the NVidia CUDA Framework
Stephen Bash, David Carpman, David Holl

{bash,dcarpman,dholl}@ll.mit.edu
MIT Lincoln Laboratory, Lexington, MA 02420

Introduction1
Over the past several years, graphics processing units
(GPUs) have gained interest as general purpose highly
parallel coprocessors. Early adopters were forced to use
traditional 3D graphics application programming interfaces
(APIs) in order to access the computational power of the
GPU. This process of recasting general purpose problems
into graphical terms can be time consuming and create
obscure code. The introduction of NVidia’s Compute
Unified Device Architecture (CUDA) Framework, a C-
language development environment for NVidia GPUs, is
designed to ease the burden placed on the general purpose
GPU programmer. In parallel with the CUDA release,
NVidia also released implementations of the BLAS and
FFT libraries for the GPU under the names CUBLAS and
CUFFT, respectively.

Previous research [1,2] has shown the vast computational
power of GPUs for signal processing. Modern radar signal
processing is a data parallel operation that benefits from
parallel processing architectures. This investigation will
focus on the real-world benefit of GPUs for radar pulse
compression. First, the performance of 1D and 2D FFTs on
a GPU via CUFFT will be compared to a modern day
multi-core CPU implementation using FFTW [3].
Subsequently, these performance results will inform the
implementation of two surrogate radar pulse compression
chains, having differing processing complexity, which will
also in turn be benchmarked similar to the FFTs.

FFT Benchmarking Methodology
The benchmarks to be presented are based on the fft_bench
code found on the NVidia CUDA Developer forums [4].
For benchmarking purposes fft_bench runs each test point
32 times and chooses the trial with the fastest time to
compute the number of FFTs possible per second.

A modified version of fft_bench used during this study runs
complex 1D and 2D transforms on the GPU using CUFFT,
and 1D and 2D transforms on the CPU using FFTW. The
code tests multiple batch sizes (number of same size FFTs
to be executed), and both in-place and out-of-place
transforms are executed. The FFTW planner was instructed
to create multi-threaded plans in patient mode. The timing
results do not include planning time for either the GPU or
the CPU. The timing results do include the transfer time
required to copy data to and from the GPU. GPU results
are measured using page-locked host memory to reduce
transfer time.

 This work is sponsored by the Air Force Research Laboratory under Air
Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and not necessarily endorse
by the United States Government.

Benchmarking was conducted on two dual-core AMD
Opterons at 2.6 GHz with 16 GB of DDR2 RAM. In the
same machine, an EVGA GeForce 8800 Ultra
SuperclockedTM video card at 1.6 GHz with 768 MB of
DDR3 RAM was used for GPU benchmarking.

Impact of Transfer Time
As mentioned previously, the benchmarking code includes
the time required to copy data from main system memory to
the GPU for processing. For numerically lightweight
operations such as a 1D FFT, the time required for the
transfer dwarfs the FFT computation time. Figure 1 shows
the time required to compute complex 1D fixed length
FFTs with varying batch sizes and the time required to
transfer the data to the GPU.

Figure 1: FFT Execution Time including GPU Transfer Time

Figure 1 shows that for short FFTs, the CPU can compute
batch sizes up to 256 in the time required to copy the data
to the GPU. For larger FFTs there is margin between the
time required for transfer and the CPU computation time.
When such a margin exists, the GPU can sometimes
transfer the data and compute the FFTs faster than the CPU.

The results in Figure 1 show the timing for doing a single
FFT on the GPU before returning the data to host memory,
and suggest that data transfer time is significant. For data
parallel operations the GPU will in general perform better
as the number of operations increases for a fixed transfer
size. Also, precomputing data that must then be transferred
may not be as beneficial on the GPU as on other computing
platforms. These are important implementation details to
be considered.

FFT Benchmark Results
At each test point (FFT and batch size) the maximum
performance is chosen for each computational engine.1
Portrayed in Figure 2 and elsewhere, the GPU speedup is
defined as the ratio of GPU performance to the CPU
performance. Values greater than one indicate the GPU is
faster, values less than one indicate the CPU is faster.

Figure 2: 1D FFT GPU Speedup vs. FFT and Batch Size

Figure 2: 1D FFT GPU Speedup vs. FFT and Batch Size
expands on the results in Figure 1. For 1D FFTs, the GPU
shows an advantage on large power-of-two sized with the
peak speedup around 2.5.

Figure 3: 2D FFT GPU Speedup vs. FFT Size

In Figure 3, 2D FFTs show a consistent advantage for the
GPU, with the maximum speedup over 6. The 2D FFT
requires more operations than its 1D counterpart, and as
such, the cost of data transfer is less of a performance
penalty.

Pulse Compression
Pulse compression in radar is a combination of waveforms
and processing that allows a long pulse to be transmitted
while retaining the range resolution of a short pulse [5]. In
what follows fast time refers to intra-pulse timing (sample

1 This may result in comparing an in-place GPU FFT vs. an out-of-place
CPU FFT.

to sample), while slow time refers to inter-pulse timing (the
time between the same sample in two consecutive pulses).

The first pulse compression processor (Figure 4) is a
traditional convolution theorem implementation. The total
operation count of this processing chain is similar to the
operation count for a large 2D FFT, so GPU speedup
similar to the 2D FFT is expected.

Replica

Fast Time
FFT

Fast Time
IFFT

Figure 4: Traditional Pulse Compression

The second pulse compression implementation is shown in
Figure 5. It adds complexity to enable spatially diverse
processing of Doppler intolerant orthogonal waveforms: a
slow-time FFT and Doppler correction prior to the fast-time
FFT, and the convolution with multiple orthogonal replicas.
The additional steps incur a large number of GPU-efficient
operations, so it is expected that this processing chain
should see significant speedup versus the CPU
implementation.

Doppler Replicas
Correction

Figure 5: Doppler Intolerant Pulse Compression

References
[1] I. Buck, “GeForce 8800 & NVIDIA CUDA: A New

Architecture for Computing on the GPU,” Supercomputing
2006 Workshop, Tampa, FL, November 13, 2006.

[2] M. McGraw-Herdeg, D. Enright, and B. Michel,
“Benchmarking the NVIDIA 8800GTX with CUDA
Development Platform,” HPEC 2007 Proceedings,
Lexington, MA, September 19, 2007.

[3] M. Frigo and S. Johnson, “The Design and Implementation of
FFTW3,” Proceedings of the IEEE 93 (2), 216–231 (2005).

[4] fft_bench code available at:
http://forums.nvidia.com/index.php?showtopic=42482

[5] M. Skolnik, Radar Handbook, Second Edition, McGraw Hill
Publishing, Boston, MA, 1990.

Slow Time
FFT

Fast Time
FFT

Fast Time
IFFT

Fast Time
IFFT

