
Porting Some Key Caltech & JPL Applications 
to a PS3 Cluster - A Wild Ride

Paul Springer (JPL), Ed Upchurch (Caltech/JPL), Mark 
Stalzer (Caltech), Sean Mauch (Caltech), John 

McCorquodale (Caltech), Jan Lindheim (Caltech), 
Michael Burl, (JPL)

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109 

California Institute of Technology
1200 E. California Blvd.

Pasadena, CA 91125

High Performance Embedded Computing (HPEC)
Workshop

23-25 September 2008



Theme of Talk:  “What Could Possibly Go Wrong?”

•

 

Development Difficulties on a PS3 Cluster
•

 

Some Progress
•

 

Lessons Learned
•

 

Unvarnished view of ongoing work
–

 

None of the tasks are completed yet
–

 

Still have unanswered questions
•

 

Plenty of embarrassments--maybe even some in this talk!
–

 

“Everyone knows the Cell isn’t meant to do that”
–

 

“If you’d just clicked on this link you would have solved your 
problems”

Presenter
Presentation Notes
Just buy some pre-installed PS-3s, wire them together through a switch, and voila--a PS-3 cluster.  “What could possibly go wrong?”

Emphasis more on programming experience rather than performance numbers.



Introduction

•

 

Last October Caltech’s Center for Advanced Computing Research 
(CACR) purchased 13 PS3’s (a lucky number) to build a high 
performance parallel algorithm testbed for under $10K with a peak 
potential of a little over 2 TFLOPS single precision. 

•

 

The PS3 cluster offers a rich test environment of heterogeneous 
multi-core nodes with MPI clustering plus the promise of low cost 
high performance and low power/weight/volume.

•

 

Low cost high performance is attractive for exploring ground 
based applications such as compute intensive SSA and QMC.

•

 

High performance low power/weight/volume is of interest for 
space based applications 
–

 

Greater autonomy for deep space missions
–

 

Downlink data volumes could be significantly reduced



Introduction

•

 

Our major goal is to assess the actual cost of extracting 
performance from the relatively inexpensive PS3’s. This includes 
programming time!

•

 

We selected for the first round a set of confirmed 
“embarrassingly” parallel applications. While not such a challenge 
in terms of parallelization, the applications selected are of 
importance to a number of Caltech/JPL users

•

 

Good performance and low porting pain would generate 
community interest

•

 

Follow on work was planned for more challenging, less 
parallelizable applications – we have not got that far

•

 

Our budget was $10K for hardware and tools (we got no tools 
other than free ones) and 1.0 FTE for one year split between three 
people; No budget for system maintenance – we thought it would 
not take any

Presenter
Presentation Notes
http://www.embedded.com/columns/technicalinsights/207403614?_requestid=870896 says “The largest group of respondents who have developed multicore systems (38 percent) said their design cycles were between 12-18 months. The next largest group (26 percent) reported design times of 18-36 months. Twenty-one percent said they developed multicore apps in as little as 6-12 months.”



PS3 Cluster Hardware

•

 

13 PS3 consoles, where each consists of:
–

 

One 3.2 GHz Power Processing Element (PPE) which has 256 MB of 
main memory.

–

 

There is also 256 MB of video memory, which is not available to 
programmers.

–

 

One Cell Processor, 6 available SPEs (Synergistic Processing 
Elements)
•

 

Each SPE has 256 KB embedded RAM
•

 

Each SPE running at 3.2 GHz
–

 

60 GB disk
–

 

Blu-ray Disk reader
–

 

Gigabit ethernet
–

 

Bluetooth 2.0
–

 

Wi-Fi network (802.11 b/g)
•

 

16-port Linksys gigabit switch
•

 

1 P4 based host machine running Fedora Core 7
•

 

Power Supply and other Hardware Problems
–

 

Two of our 13 consoles have died; we now leave only 2 on regularly



PS3 Cluster and P4 Host

Presenter
Presentation Notes
Switch is under telephone.

13th console is by phone, just because it wouldn’t fit



Cell Block Diagram for PS3

EIB

SPU SPU SPU

SPU SPU SPU

PPU Memory

• PPU is PowerPC core
• SPUs are secondary processors
• Only 6 useable SPUs out of 8 total
• One SPU is reserved, one is not accessible

Presenter
Presentation Notes
SPE includes MFC--Memory flow controller

EIB = Element Interconnect Bus



PS3 Software Configuration

•

 

P4 host runs Fedora 7 and SDK 2.1
•

 

All nodes initially installed with YDL 5 and SDK 2.1
–

 

YDL 5 did not support IBM’s SPU-capable Fortran compiler, ppuxlf
•

 

Eventually one node used Fedora 7 and SDK 3.0, a second node 
YDL 6.0 and SDK 3.0
–

 

Fedora 7 installation difficulties
•

 

Fedora Core media not recognized by PS3 BIOS
•

 

Bootloader had to be downloaded onto pre-configured memory stick
•

 

Power management needed patched kernel
–

 

SDK installed easier onto Fedora
•

 

SDK expects Fedora
•

 

Some overlap between SDK packages and YDL standard installation
•

 

Some packages had to be removed to get a consistent system

Presenter
Presentation Notes
One of the nodes that died was the one using Fedora 7

Shoestring budget did not permit us to reinstall Fedora on a new node



Versions, Versions, Versions

•

 

APIs changed on both FFTW and SDK
•

 

Version incompatibilities were hard to track



ROI:  Introduction

•

 

Perl scripts control combining these programs to specifically create a geocoded deformation 
phase or topographic phase image from two ERS radar images and a digital elevation model, 
or create a deformation phase image from three radar images without a digital elevation 
model.

•

 

ROI_PAC has been optimized to reduce programming time not memory used and therefore 
trades off programming simplicity with use of large (GByte or better) image buffers – for the 
PS3’s we have to optimize minimum use of memory

•

 

ROI_PAC, the Repeat Orbit Interferometry 
Package developed at JPL and Caltech, is a 
collection of Fortran and C programs bound 
together with Perl scripts to perform certain 
routine but important tasks in synthetic aperture 
radar (SAR) repeat orbit interferometry.  

•

 

Individual programs perform everything from 
raw data conditioning, SAR image processing, 
interferogram formation, correlation estimation, 
phase unwrapping, baseline determination, 
estimation of topography, removal of 
topography from a deformation interferogram, 
and geocoding.



ROI:  Initial Strategy
•

 

Our first port to Cell--and by far the most complicated
•

 

Very large package including scripts and Fortran programs
–

 

Configuration process searches for known Fortran compilers, 
does a make for each one, tests each one, and gives results

–

 

What parts do we port;  what parts go onto SPU?
–

 

Package could handle many tasks;  create a single benchmark
•

 

How do we conceptualize the Cell?
–

 

Seven processors?
–

 

One processor with 6 accelerators? √
–

 

Reasoning:  SPUs have low memory, no MPI
–

 

Heterogeneous architecture results in heterogeneous 
programming model
•

 

This model necessitated by large differences between PPU 
and SPU

•

 

Single model would make for easier development
•

 

Plan:  first do MPI port to cluster, then bring in SPU support
–

 

MPI code had not been used in a while, its status was uncertain
–

 

Slow parts of code had already been identified, with MPI code 
added to them

Image 1

Image 2

Roi

Resamp_Roi

Ampcor

Presenter
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Animate

Plan gives us experience in Cell development



ROI:  Approach and Problems

•

 

Built a reference version of roi_pac on the P4 host.  Ran 
package’s test script.  No problems.  (False) confidence builder.

•

 

Built roi_pac on PS3, pointing to ppuxlf, but it crashed in testing
–

 

Web search revealed that YDL 5 was incompatible
•

 

Generic PS3 Fortran build began running (no SPU support), but 
then crashed
–

 

No detailed information, even from gdb
–

 

One program crashing in the middle of a number that were being 
executed via test script; very hard to track down

•

 

Two of three main programs in roi_pac needed >1GB memory
–

 

We built new test script to only exercise smaller program
–

 

Problems expected for SPU, but not for PPU
•

 

“We don’t develop for low-memory environments”

Presenter
Presentation Notes
PPU memory limitations on PS3:  256 MB max

Decision to just focus on roi.f initially, and look later at running larger programs across nodes

Quote is reasonable and cost-effective for their situation



ROI:  MPI

•

 

MPI code embedded in the S/W was old and out of date
•

 

Turning it on revealed only minor problems
•

 

Test script limited parallelism to x5
•

 

Code supported parallel file system, but we had none
•

 

I/O was to host’s cross-mounted disk
–

 

Slow
•

 

We chose to benchmark based on processing time, not including 
I/O time
–

 

Timing on P4 host:  157 seconds
–

 

1 PS3: 294 seconds
–

 

5 PS3s (using MPI, but not SPUs):  71 seconds
•

 

Single PS3 run had many page faults, but not the 5-node runs



ROI:  FFT
•

 

We had heard that FFT 
performance looked 
promising on the Cell
–

 

We looked for applications 
that made use of FFTs

•

 

Building roi_pac requires an 
FFT package to be 
downloaded first

•

 

We chose FFTW as there was 
built-in support already

•

 

roi_pac README specified 
FFTW 3--we used 3.1.2

•

 

Statistics showed about 50- 
70% of time was spent doing 
FFTs
–

 

But the run included many 
page faults, so it bears 
further investigation



FFTW

•

 

ROI uses FFTW3, SVM uses 
FFTW 2

•

 

But…only FFTW 3 had Cell 
support

•

 

FFTW 3.1 had no MPI support 
(but 3.2 now does)

•

 

FFTW 3.1 required SDK 2
•

 

Our communication code was 
written using SDK 3

•

 

We eagerly await new versions of 
software that use SDK 3, and 
FFTW 3



FFTC

•

 

High speed FFT package from Georgia Tech, customized for Cell
•

 

We wanted to test what performance we could get on PS3, as well 
as what versions were required

•

 

The released version was written for the SDK 2 I/F
–

 

We modified it to work with SDK 3
•

 

No 6-node version available
•

 

The 4-node version performed at 5.9 Gflops for 16K complex FFT
–

 

Lower than we expected; published results showed 22 Gflops on 8 
nodes, running on a blade

•

 

No interface for plan generation, like FFTW has
–

 

Those peak numbers can’t be obtained for a real application, unless 
package is modified

Presenter
Presentation Notes
Fedora and YDL, SDK 2 & 3, and cross-compiled and compiled natively, consistently at 5.9 Gflops

Plan I/F allows for pre-generation of twiddle factors, then use of them in later calculations



Stochastic Simulation Algorithm (SSA)

•

 

Algorithm originally due to Gillespie [1976] computes trajectories 
of continuous-time discrete-state Markov processes

•

 

Stochastic simulation of trajectories of coupled reaction systems 
with integer species counts (like systems of ODEs with small- 
integer-valued variables)

•

 

Usually used for rarified-participant chemistry
•

 

Applicable where discreteness of participant cardinality matters
–

 

biochemical simulation (well-stirred test tube assumptions), 
aerospace, planetary science, etc.

•

 

Experimental SPU-based implementation of original Gillespie 
algorithm:
–

 

Entirely on a single SPU (including model, simulation state and RNGs)

Presenter
Presentation Notes
No performance numbers yet



•

 

A particle-system simulation of 
discrete populations of 
reactants

•

 

Like a spatially-explicit SSA
•

 

Roughly the computation 
performed by the extremely 
successful ’MCell' biological 
simulation tool [ Stiles and 
Bartol 2001 ]

•

 

Experimental SPU-based 
implementation:
–

 

Simple two-species 
fusion/fission system

–

 

Everything on one SPU (system, 
state, RNGs)

Spatially-Explicit Discrete-State Markov Simulation

Presenter
Presentation Notes
No performance numbers yet



Random Number Generation
•

 

Heavy use of RNG for previous two applications--we need good 
performance

•

 

Improving on IBM SDK Monte Carlo library
–

 

Uniform Mersenne Twister slower than expected:  6M uint32s/s per 
SPU

–

 

We decided to write our own, with GPL license
–

 

Important to know RNG reliability, for science applications
•

 

Earlier version of gaussian was not smooth near the gaussian mean
•

 

Technical report detailing testing of RNG would have saved us work

•

 

Custom uniform Mersenne Twister with period 2^19937 [ 
Matsumoto and Nishimura ]
–

 

4 x 32-bit uniform unsigned ints per 83 cycles--153M/s per SPU
–

 

10k of SPU memory for RNG state
–

 

Straight C:  possibly faster if hand-optimized
–

 

about as fast per SPU as Virtex-II (FPGA) implementation [ Thomas 
and Luk 2005 ]

–

 

Passes “Crush” [ L'Ecuyer and Simard 2005 ] 

Presenter
Presentation Notes
These programs, built from scratch for the SPUs, went more smoothly than the ports

Technical report on Crush results would be nice



RNG:  Gaussian

•

 

Uniform 4 x uint32 -> Gaussian 4 x float
–

 

[4,4]-rational polynomial approximant of inverse-gaussian-cumulative
•

 

fit to Chebyshev residual via differential correction [ Cheney and Loeb 1961 / 
Klein 1968 ]

•

 

error comparable to SPU float precision
•

 

future work: SPU error analysis (worst-case ulps), inversion & TestU01
–

 

piecewise in discrete log of uint32 (count leading zeros)
•

 

branch-free SIMD in TBD cycles
•

 

we believe novel approach
–

 

Same approach can be used to efficiently generate broader class of 
numbers, such as those needed by the SSA algorithm

•

 

Composite performance: 72 million gaussian-distributed 
floats/s/SPU

Presenter
Presentation Notes
Novelty is in approximations using logarithmic segments of inverse cumulative

Inversion is also used in evaluating gaussian, by transforming it to uniform

SSA numbers can be generated without an additional step:  guassian / a[c2x^2 + c1x + c0]

Anyone interested in the technical details at this level can contact John.



Support Vector Machines (SVM)

•

 

Nonlinear classifiers that yield best or close-to-best results 
across a variety of applications

•

 

Sample Applications
–

 

Medical image analysis 
–

 

Protein folding, etc.
–

 

Automatic Target Recognition 
–

 

Pedestrian detection 
–

 

Handwritten Digit Recognition 
–

 

Face detection 

–

 

Crater detection

x1

x2



SVM Image Processing Application

•

 

Brute Force: Compute SVM 
decision function at every pixel 
using a sliding window.

•

 

Use image pyramid to find 
objects of different sizes.

•

 

Cost of brute force approach 
per image pixel is O(Mw2) where 
M is the number of support 
vectors and w is the width of 
the sliding window.

•

 

FFT and signal proc tricks (e.g., 
overlap-and-add) can be used 
to reduce cost per image pixel 
to: O(M log2 (w)) Cost still high, but most of 

the work is to do FFTs.

Port to PS3?



Lessons & Conclusions (1)

•

 

Lower your expectations
–

 

PS3 is more like 1 processor with 6 accelerators, rather than 7 
processors.

•

 

Be selective about which applications to port
–

 

Experience with Cell is important
–

 

Better chance of success with new application, than with porting
•

 

Memory considerations
–

 

256K for SPU is too small
–

 

256M for PPU is limiting
•

 

Memory limitations can add to cost of porting/developing code

•

 

Language considerations
–

 

C is best
–

 

C++ may present difficulties for porting
•

 

“Hello world” runs out of memory on SPU, using cout()
•

 

Our C++ objects hid data input inside of object
•

 

But…efficient DMA usage motivates single DMA operation using a large 
buffer



Lessons & Conclusions (2)

•

 

Communications
–

 

Difficult and inconsistent between PPU & SPU
•

 

Destination addresses must be known at transfer time
•

 

Different object files imply those addresses must be communicated, not 
calculated

–

 

Memory and speed limitations may preclude general purpose 
messaging layer--a serious problem

•

 

Documentation and Downloads
–

 

Best site we found is Barcelona Supercomputing Center
•

 

http://www.bsc.es/plantillaG.php?cat_id=96
•

 

aggregation of toolchain software in a coherent presentation
–

 

Wish: IBM SDK libs were delivered in a clean, minimal, distribution 
independent way (tarballs?) for layering on top of the other software

http://www.bsc.es/plantillaG.php?cat_id=96


Tradeoffs with Heterogeneous Multi-Cores

Applicability

Increasing Heterogeneity of Programming Model

Increasing Ease of Use

Narrowly ApplicableBroadly Applicable

Presenter
Presentation Notes
When processors in a multi-core (or cluster) are very heterogeneous, to the point of being unbalanced, with no unified interfaces, development effort increases, and applicability diminishes to just specific types of applications.



Additional Material



Background--Gedae

•

 

Our combination of software versions on the host (Fedora 7 + SDK 
2.1) not fully supported by them

•

 

We tried their Fedora 6 version
•

 

Responsive support, but in the end we could not resolve problems



Issues with Software Installs

•

 

Installing Yellow Dog Linux from the DVD was as simple as installing 
Linux on a workstation.  The media is seen by the PS3 BIOS and boots up 
into the familiar install menu.  For Fedora Core, however, the media was 
not recognized by the PS3, so a boot-loader had to be downloaded and 
installed on pre-configured USB memory stick.  Also, in order to get power 
management working with a Fedora Core system, a specially patched 
kernel has to be installed afterward.  We have not tried Fedora Core 9, to 
see if this has improved.

•

 

IBM seems to use Fedora Core as their standard.  The packages for Cell 
SDK installs typically more easily on Fedora Core, than on YDL. The 
reason is some overlap in what the standard YDL installation has and what 
comes with Cell SDK.  A number of packages had to be removed from the 
system, before the installation would succeed.
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