
Optimization of Embedded Linux systems without FPU
Sergey Panasyuk, SUNY Institute of Technology, panasys@cs.sunyit.edu

Scott Spetka, SUNY Institute of Technology and ITT Corp., scott@cs.sunyit.edu

Abstract
1

Linux is a popular operating system for embedded systems.

Some embedded systems use processors without floating

point accelerators (FPA) or floating point units (FPU), in

order to satisfy cost and power consumption requirements.

This paper describes and compares optimization options for

software implementation of floating point operations on

systems without FPA or FPU. Our results show that

software approximations perform very well, even when

compared to systems with hardware FPA or FPU. Software

approximations to IEEE standard floating point can be used

in many important applications, such as cell phones, games,

etc.

Introduction
2

Linux is often selected for embedded systems, because it is

free, open source and easily modified. Linux is available

under the GNU General Public License. As an embedded

operating system Linux is fully ported to a wide variety of

different architectures: Alpha, ARM, MIPS, PowerPC, SH,

SPARC and others.

Low cost, optimum performance and long battery life are

common requirements for many embedded systems,

including cell phones, media players and industrial hand-

held testing devices. Low cost combined with low power

consumption puts restrictions on the type of CPU that an

embedded system can have, normally it is low frequency

(50 – 500 MHz) CPU without hardware FPA or FPU,

which we refer to generically as FPU.

The ARM type of processors is very popular for this type of

embedded system. Integer operations are performed well by

such processors, but when it comes to floating point

operations, those systems perform poorly. Applications that

require fast floating point computations range from games

to commercial solutions like protocol and media testers.

The absence of FPU requires careful design and proper

system and code optimizations in order to deliver high

system performance. We compare software optimizations

for floating point operations using a PDA-like device and a

PC. The test applications generates a high demand for

floating point operations, both single and double precision.

We compare software floating point emulation with kernel

trapped hardware FPU instructions in the first section. In

the second section, we compare approximation techniques

with software emulation of IEEE standard floating point.

We then describe our test environment and present our

results.

Floating Point Emulation vs. Hardware FPU
To optimize an embedded Linux system, avoid using Linux

kernel supported floating point emulation. Because FPU

instructions from binary image will be fetched to CPU for

execution, it will produce unknown instruction exception. A

Linux kernel running on systems without a hardware FPU

must include support to handle such exceptions from CPU -

unknown instruction trap. ARM Linux kernel includes

floating point emulation (Software FPE) routines that are

capable of computing FPU instructions by substituting them

with a set of integer instructions and producing the same

result (or close approximation) as FPU instruction [1,2].

The Linux kernel (2.6.17.9) has two different configuration

options for handling the absence of FPU: NetWinder

Floating Point Emulator (NWFPE), Fast Floating Point

Emulator (FastFPE). Table 1 shows the result of

disassembly for a program that adds two floating point

numbers, for the FPU and FPE approaches.

Table 1: Disassembly of Add two Floats

 FPU FPE

ldfs f0, [r3, #0]

ldfs f1, [r1, #0]

adfs f0, f0, f1

stfs f0, [r2, #0]

ldr r0, [sl, r4, asl #2]

ldr r1, [r8, r4, asl #2]

bl __addsf3

str r0, [r5, r4, asl #2]

Software FPE vs. Approximation
While software FPE provides big performance boost on

systems without FPU it may still be considered as slow

compared to approximation alternatives. In order to satisfy

IEEE standard and perform accurate computation FPU

instructions must be emulated to the maximum precision.

Complex trigonometric functions will use a lot of software

FPE function calls to produce accurate result. It is possible

to increase performance of embedded system without FPU

even further by implementing custom function calls. In this

project, we evaluate Intel’s Integrated Performance

Primitives (IPP) [3]: a set of libraries for XScale based

architecture to perform floating point operations by using

integer arithmetic. IPP converts float type to integer with

scale factor.

Test Systems
Currently there are a lot of different architectures available

for PDA’s, Smartphones, handhelds and other embedded

systems. ARM architecture is well supported by Linux

community and popular in embedded devices. For the

project we selected a PXA270 based device that falls into

the ARM version 5 with thumb instructions (ARM5TE)

architecture. PXA270 designed by Intel and is part of

XScale family or processors (PXA2xx). PXA270 is being

used in a large set of commercially available handheld and

embedded systems. This processor does not have a

hardware FPU and there is no option of adding an FPA to

it. Because of its popularity and lack of FPU it is a good

candidate for floating point optimization; to get most from

the embedded system. A 300MHz Intel Celeron System

was used to compare our software approaches with a

comparable system with a FPU. Table 2 describes our test

hardware.

Table 2: Test Systems

 PXA270 312MHz Celeron 300Mhz

System Bus

Memory

Storage

Network

OS

208 MHz

64 MB

64 MB (Flash)

Build-in NIC

Linux 2.6.17.9

33 MHz

512 MB

60GB (Hard Disk)

Build-in NIC

Win XP

Results
We tested a set of floating point operations, ranging from

simple assignment to a function involving multiplication

and log. The precision of each of the experiments

performed on the PXA270 was compared to IPP on the x86,

since IPP/x86 produced 24/53 bits mantissa accuracy for

floats and double respectively. As an example of our

precision results, table 3 shows that the precision on the

PXA270 for IPP on was poor, compared to IPP on the x86.

Table 3: Float Errors on PXA270 with IPP

Function Min Mean Mean

F=X

F=X+Y

F=X*Y

F=X/Y

F=LN(X)

-2.98E-08

-1.19E-07

-3.81E-06

-9.54E-07

-4.77E-07

-2.47E-12

4.83E-12

6.51E-10

3.86E-11

1.24E-09

2.98E-08

1.19E-07

3.81E-06

9.54E-07

4.77E-07

Although the precision was poor for PXA270 with IPP

software floating point emulation, figure 2 shows that it

performed best, after hardware FPU, for some operations.

This is not a surprise because IPP uses approximation and

conversion of float to integer with scale factor. Loss of

precision because of conversion can be observed by

examining F=X, the first row in the table. The cost of

assignment, as determined experimentally, was subtracted

from the performance measurements that resulted from

assigning the results of the floating point expressions to

variables for our other tests. This allowed us to accurately

measure the cost of each floating point operation.

While IPP provides great performance, its accuracy is very

poor and must be used with this in mind. Also, IPP does not

fully support sqrt, exp and sin, thus these results are not

presented in figure 2. With IPP, care must be taken to avoid

overflow. For example, if the scale is 24, then the integer

part of a float cannot exceed a range from -127 to +127. A

major disadvantage for IPP is that it is not free.

Figure 1: Performance Results.

Conclusion
In conclusion, we recommend the following:

1) Perform computation on floats instead of doubles (If it is

not critical to use doubles). All computations were

performed in the same or shorter period of time by using

floats. On average Software FPE performed twice as fast on

floats as on doubles. FastFPE had 1/3 increase, while

NWFPE 1/6 increase in performance.

2) If Software FPE is not an option then select FastFPE in

the Linux kernel configuration. It is experimental and has a

higher difference in results then Software FPE or NWFPE,

but performs much better then NWFPE: on average at least

twice as fast.

3) Approximation libraries like IPP can be used to speed up

computation of functions like natural logarithm. However,

it is important to perform benchmark to see what the actual

difference in output is and what speed boost can be

achieved. In this work, only the natural logarithm function

would make sense to replace with a call to IPP, since the

difference in results are not bad and performance increased

8, 39 and 107 times for Software FPE, FastFPE and

NWFPE respectively. Since it is common for many

embedded test systems to convert data into a logarithmic

domain, it would be proper place for IPP library.

References
[1] ARM Application Note 23

[2] ARM Application Note 55

[3] Intel Integrated Performance Primitives

www(dot)intel(dot)com/cd/software/products/asmo-

na/eng/302910.htm

