
Multithreaded Programming in Cilk

Matteo Frigo



Multicore challanges

Development time:

Will you get your product out in time?

Where will you find enough parallel-programming talent?

Will you be forced to redesign your application?

Application performance

How will you achieve superior processor utilization?

Will your solution scale as the number of processor cores
increases?

Software reliability

How will you test your multicore applications?



Cilk Arts’ solution

Development time:

No application redesign required.

Can be learned in days by average programmers.

Seamless path forward (and backward).

Application performance

Best-in-class performance.

Linear scaling as cores are added.

Minimal overhead on a single core.

Software reliability

Multithreaded version as reliable as the original.



About Cilk Arts

Mission:

To provide the easiest, quickest, and most reliable way to optimize
application performance on multicore processors.

About:

Incorporated in 2006 to commercialize 15 years of research.

Launched in March 2007.

Headquartered in Lexington, MA.

Team:

Duncan McCallum, CEO.

Prof. Charles E. Leiserson, CTO.

Matteo Frigo, Chief Scientist.

Steve Lewin-Berlin, VP Engineering and Operations.



Cilk

What is Cilk?

A C language for programming dynamic multithreaded applications
on shared-memory multiprocessors.

Applications:

Virus shell assembly.

Graphics rendering.

n-body simulation.

Chess programs.

Dense and sparse linear algebra.

Lattice-Boltzmann methods.

Chip power grid analysis.

Provably good runtime system:

Automatically manages low-level aspects of parallel execution,
including protocols, load balancing, and scheduling.



Fibonacci

C elision

int fib(int n)
{

if (n < 2) return n;
else {
int x, y;
x = fib(n - 1);
y = fib(n - 2);
return x + y;

}
}

Cilk

cilk int fib(int n)
{
if (n < 2) return n;
else {

int x, y;
x = spawn fib(n - 1);
y = spawn fib(n - 2);
sync;
return x + y;

}
}

Cilk is a faithful extension of C/C++. The serial elision of a Cilk
program is a valid implementation. Cilk provides no new data types.



Basic Cilk keywords

Fibonacci

cilk int fib(int n)
{

if (n < 2) return n;
else {
int x, y;
x = spawn fib(n - 1);
y = spawn fib(n - 2);
sync;
return x + y;

}
}

cilk:

Identifies a function as a Cilk
procedure, capable of being
spawned in parallel.



Basic Cilk keywords

Fibonacci

cilk int fib(int n)
{

if (n < 2) return n;
else {
int x, y;
x = spawn fib(n - 1);
y = spawn fib(n - 2);
sync;
return x + y;

}
}

cilk:

Identifies a function as a Cilk
procedure, capable of being
spawned in parallel.

spawn:

The child procedure can be
executed in parallel with the parent.



Basic Cilk keywords

Fibonacci

cilk int fib(int n)
{

if (n < 2) return n;
else {
int x, y;
x = spawn fib(n - 1);
y = spawn fib(n - 2);
sync;
return x + y;

}
}

cilk:

Identifies a function as a Cilk
procedure, capable of being
spawned in parallel.

spawn:

The child procedure can be
executed in parallel with the parent.

sync:

Cannot be passed until all
spawned children have returned.



Dynamic multithreading

Example: fib(4)

cilk int fib(int n) {
if (n < 2) return n;
else {

int x, y;
x = spawn fib(n - 1);
y = spawn fib(n - 2);
sync;
return x + y;

}
}

The computation dag
unfolds dynamically.



Cactus stack

Cilk supports C’s rule for pointers:

A pointer to stack space can be passed from parent to child, but not
from child to parent. (Cilk also supports malloc/new.)

Cilk’s cactus stack supports several stack views in parallel.

cilk void A(void)
{

spawn B();
spawn C();

}

cilk void C(void)
{

spawn D();
spawn E();

}

Views of stack

A A A A A

B
C C C

D
E

A B C D E

 



Cilk’s thread scheduler

Randomized work stealing

Load-balances the computation at run-time.

Scales down

Slowdown of Cilk program on 1 processor vs. the serial elision is
negligible.

Scales up

A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture
has sufficient memory bandwidth.

Spawn is cheap

A spawn/return in Cilk is over 450 times faster than a pthread
create/exit and about 3 times slower than an ordinary C function call
on contemporary x86 processors.



Debugging

The Nondeterminator debugging tool:

Provably guarantees to detect and localize data-race bugs.

Information
localizing a
data race.

FAIL PASS

data set
Input“Abelian”

Cilk program

Every
schedule
produces the
same result.

Data race:

Occurs whenever a thread modifies a location and another thread,
holding no locks in common, accesses the location simultaneously.



Advanced features

Support for nondeterministic programs:

The inlet keyword specifies an internal function that can be
called to incorporate a returned result into the parent frame in a
nonstandard way when a spawned child returns.

The abort keyword forces all spawned children to terminate
abruptly.

The SYNCHED pseudovariable tests whether a sync would
succeed.

A Cilk library provides mutex locks for atomicity.



HPC challenge benchmarks

2006 Class 2 Award for Best Overall Productivity

HPL DGEMM STREAM PTRANS FFTE
P Gflop/s η Gflop/s η GB/s η GB/s η Gflop/s η

1 5.2 5.1 0.8 0.7 0.7
2 9.4 89 9.7 96 0.9 56 0.5 36 0.9 67
4 17.3 85 19.7 97 1.8 57 0.9 33 1.8 68
8 30.8 73 35.7 88 2.9 46 1.7 30 2.9 55

16 52.5 63 64.9 80 4.0 32 3.3 29 4.0 38
32 88.6 52 118.9 73 6.8 27 6.1 27 6.8 32
64 101.6 30 248.0 76 14.0 28 11.6 26 14.0 33

128 463.1 71 25.0 25 18.3 20 25.9 31
256 943.0 73 44.2 22 27.2 15 49.5 29

[Kuszmaul 2006], SGI Altix 3700.



Productivity

Only submission that implemented all six benchmarks

One programmer, about one week of work.

Cilk-ifying all six benchmarks required 137 keywords

MPI Cilk Dist. to
Benchmark SLoC SLoC Multicore

STREAM 658 58 11
PTRANS 2261 81 13
RandomAccess 1883 123 18
HPL 15608 348 41
DGEMM 184† 97 19
FFTE 1747 230 35

†MPI DGEMM uses the HPL parallel matrix multiplication.



Conclusion

Cilk offers:

Compatibility with existing C/C++ serial code.

Lightweight primitives for expressing parallelism.

Robust load-balancing scheduler.

Tools to ensure parallel correctness.


