
Implementation of Polar Format SAR Image Formation
On the IBM Cell Broadband Engine

Jeffrey A Rudin
Mercury Computer Systems, Inc.

jrudin@mc.com

Introduction
The advent of multicore processors to address
the ever increasing requirements for processing
speed and density has led to increased
programming difficulty when implementing
defense applications. In particular, efficient
adaptation of the IBM Cell Broadband Engine
(CBE), which was developed for the video
gaming industry, to defense applications can be
uniquely challenging.

The IBM CBE is essentially a distributed
memory, multiprocessing system on a single
chip. It consists of a ring bus that connects a
single PowerPC Processing Element (PPE), eight
Synergistic Processing Elements (SPE), a high-
bandwidth memory interface to the external
XDR main memory, and a coherent interface bus
to connect multiple Cell processors together.

In order to examine the challenges of using the
Cell processor in detail, and to develop tools and
methodologies to increase the programmability
and computational efficiency of the Cell
processor, Mercury Computer Systems performs
analyses and develops benchmarks focused on
defense applications. One particular application,
which has benefited from high-performance
computing technology is Synthetic Aperture
Radar (SAR) image formation processing.

One well known method of SAR image
formation is the Polar Format Algorithm (PFA).
It is a simple algorithm whose processing steps
are representative of those contained in other
Fourier-based image formation techniques.

PFA consists of interpolation, corner-turns, and
range and azimuth compression. While one may
hypothesize that the compression algorithms
may be the most computationally intense portion
of the algorithm, it is the interpolation algorithm
that can dominate the processing cycle. For this
reason, the implementation of the interpolation
algorithm was the particular focus of this effort.

(Benchmarking of corner-turns and compression
were accomplished in a separate study.)

Challenges to implementing PFA on the CBE
include efficiently partitioning and moving the
data and the tasks across the SPEs while
maintaining a high computational efficiency
through the use of efficient instruction
pipelining, register use, and exploitation of the
SIMD processing engines.

Implementation
The test platform was a Mercury 3.2 GHz Dual
Cell-Based Blade; however only one of the Cell
processors was used during the benchmarking of
the algorithm. The 1 GB of XDR memory on the
test platform was allocated to provide two
complete image buffers. Given that an 8k x 8k
image requires 512 MB for single precision,
complex floating-point storage, the upper limit
of the benchmarking was set to 50 Mpixel to
allow for instruction code. Half of the SPE’s
local store memory of 256 KB was allocated to
instructions leaving sufficient memory for two, 8
kpt. complex floating-point buffer.

The algorithm was implemented using a
“function-offload” programming model. In this
model, the PPE acts as a manager directing the
work of the SPEs. Sections of the algorithm are
loaded into the SPEs as individual “tasks.” Data
is then moved as “tiles” to the SPE where it is
processed. Utilization of the SPEs is maximized
by minimizing the number of trips that the data
must take to the XDR memory.

The interpolation algorithm requires a non-
uniform 2D raster of interpolation grid values. It
was assumed that these values are one-time uses
because the flight geometries for any two images
are not exactly alike and must be recomputed for
each image. These may be computed either on
the fly during the tiling process, or precomputed
and stored in memory. This latter approach was

not used because the problem with precomputing
the interpolation grid is that it requires additional
storage in XDR memory and additional data
movement between the XDR memory and the
SPE’s local store.

Interpolation was accomplished by FFT/zero-
pad/IFFT interpolation and nearest-neighbor
selection. The FFT upsample process requires
that there is at least one overlapping point
between every two tiles. Additional overlapping
is required minimize the effects of the Gibbs
phenomena that occurs near the edge of the
transformed data. The size of the SPE’s local
store memory directly affects the efficiency of
the interpolation algorithm due to this minimum
tile overlap requirement – the smaller the tile the
larger the relative overhead and the lower the
efficiency. Additionally, the overlap requirement
is quantized to meet the 128-byte memory
alignment restriction for efficient DMA. Given a
buffer size of 8k, and an upsample factor of 8,
this would limit the input tile size to 1 kpt.
However, auxiliary buffer requirements reduce
this to 512 pts., including a before and after
overlap of 32 points each.

After a tile has been received by an SPE, the k-
space boundaries and interpolation grid points
are computed for each tile once it is sent to the
SPE. The computation of the interpolation grid
values was vectorized to take advantage of the
SIMD computation engines within the SPEs in
order to boost efficiency.

Because the interpolation grid is non-uniform,
and because the number of output points is

input points, the scaling and offset factor
between the raw and interpolated data may be
different. This implies that a particular input tile
may produce zero, one, or more than one output
tiles. This alters the typical get-tile/put-tile loop
that the SPEs would normally execute in a
simple image processing operation and requires
the use of a nested input-output loop structure.

In addition, the memory alignment that i

permitted to be independent from the number of

s

s accomplished

mark was run for various image sizes

required for efficient DMA requires that the data
in the output buffer be properly aligned, which
requires additional data movement within the
SPE that is an overhead factor.

Data-flow management wa
through the use of Mercury’s MultiCore
Framework (MCF). This middleware permitted
the dataflow to be managed through the use of
the “tile channel” construct, which automatically
partitions and synchronizes the scatter-gather
dataflow between the main XDR memory and
the SPEs’ local store memory. Processing on the
SPEs was accelerated through the use of
Mercury’s Scientific Algorithm Library (SAL) in
order to exploit the SIMD engines on the SPEs.

Results
The bench
and numbers of SPEs to examine scalability. The
image sizes were varied independently in both
range and azimuth. The results show a high
degree of scalability of the algorithm. Processing
of a 10k x 10k image was estimated to take
approximately 1/17 of the aperture collection
time. Future work will include further
optimization of the code and investigation of
larger image sizes.

Interpolation Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60

Image Size (Mpix)

Ex
ec

ut
io

n
Ti

m
e

(m
se

c)

8 SPE

4 SPE

2 SPE

1 SPE

Processing time estimate for 10K x 10K image

pixel/sec)

.86 sec

 sec

 Total processing time: 4.21 sec. (23.8 Mpixel/sec)

 Synthetic Aperture Time (sec): 73.86 sec.
 Range Interpolation: 1.86 sec (53.8 M
 Cornerturn: 0.11 sec (909 Mpixel/sec)
 Azimuth Interpolation: 1 (53.8 Mpixel/sec)
 Cornerturn: 0.11 sec (909 Mpixel/sec)
 Range Compress: 0.08 sec (1250 Mpixel/sec)
 Cornerturn: 0.11 sec (909 Mpixel/sec)
 Azimuth Compress: 0.08 (1250 Mpixel/sec)

	Introduction
	Implementation
	Results

