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Introduction 
The advent of multicore processors to address 
the ever increasing requirements for processing 
speed and density has led to increased 
programming difficulty when implementing 
defense applications. In particular, efficient 
adaptation of the IBM Cell Broadband Engine 
(CBE), which was developed for the video 
gaming industry, to defense applications can be 
uniquely challenging. 

The IBM CBE is essentially a distributed 
memory, multiprocessing system on a single 
chip. It consists of a ring bus that connects a 
single PowerPC Processing Element (PPE), eight 
Synergistic Processing Elements (SPE), a high-
bandwidth memory interface to the external 
XDR main memory, and a coherent interface bus 
to connect multiple Cell processors together. 

In order to examine the challenges of using the 
Cell processor in detail, and to develop tools and 
methodologies to increase the programmability 
and computational efficiency of the Cell 
processor, Mercury Computer Systems performs 
analyses and develops benchmarks focused on 
defense applications. One particular application, 
which has benefited from high-performance 
computing technology is Synthetic Aperture 
Radar (SAR) image formation processing.  

One well known method of SAR image 
formation is the Polar Format Algorithm (PFA). 
It is a simple algorithm whose processing steps 
are representative of those contained in other 
Fourier-based image formation techniques.  

PFA consists of interpolation, corner-turns, and 
range and azimuth compression. While one may 
hypothesize that the compression algorithms 
may be the most computationally intense portion 
of the algorithm, it is the interpolation algorithm 
that can dominate the processing cycle. For this 
reason, the implementation of the interpolation 
algorithm was the particular focus of this effort.  

 

 

 

(Benchmarking of corner-turns and compression 
were accomplished in a separate study.) 

Challenges to implementing PFA on the CBE 
include efficiently partitioning and moving the 
data and the tasks across the SPEs while 
maintaining a high computational efficiency 
through the use of efficient instruction 
pipelining, register use, and exploitation of the 
SIMD processing engines.  

Implementation 
The test platform was a Mercury 3.2 GHz Dual 
Cell-Based Blade; however only one of the Cell 
processors was used during the benchmarking of 
the algorithm. The 1 GB of XDR memory on the 
test platform was allocated to provide two 
complete image buffers. Given that an 8k x 8k 
image requires 512 MB for single precision, 
complex floating-point storage, the upper limit 
of the benchmarking was set to 50 Mpixel to 
allow for instruction code. Half of the SPE’s 
local store memory of 256 KB was allocated to 
instructions leaving sufficient memory for two, 8 
kpt. complex floating-point buffer.  

The algorithm was implemented using a 
“function-offload” programming model. In this 
model, the PPE acts as a manager directing the 
work of the SPEs. Sections of the algorithm are 
loaded into the SPEs as individual “tasks.” Data 
is then moved as “tiles” to the SPE where it is 
processed. Utilization of the SPEs is maximized 
by minimizing the number of trips that the data 
must take to the XDR memory. 

The interpolation algorithm requires a non-
uniform 2D raster of interpolation grid values. It 
was assumed that these values are one-time uses 
because the flight geometries for any two images 
are not exactly alike and must be recomputed for 
each image. These may be computed either on 
the fly during the tiling process, or precomputed 
and stored in memory. This latter approach was 

 

 



not used because the problem with precomputing 
the interpolation grid is that it requires additional 
storage in XDR memory and additional data 
movement between the XDR memory and the 
SPE’s local store. 

Interpolation was accomplished by FFT/zero-
pad/IFFT interpolation and nearest-neighbor 
selection. The FFT upsample process requires 
that there is at least one overlapping point 
between every two tiles. Additional overlapping 
is required minimize the effects of the Gibbs 
phenomena that occurs near the edge of the 
transformed data. The size of the SPE’s local 
store memory directly affects the efficiency of 
the interpolation algorithm due to this minimum 
tile overlap requirement – the smaller the tile the 
larger the relative overhead and the lower the 
efficiency. Additionally, the overlap requirement 
is quantized to meet the 128-byte memory 
alignment restriction for efficient DMA. Given a 
buffer size of 8k, and an upsample factor of 8, 
this would limit the input tile size to 1 kpt. 
However, auxiliary buffer requirements reduce 
this to 512 pts., including a before and after 
overlap of 32 points each. 

After a tile has been received by an SPE, the k-
space boundaries and interpolation grid points 
are computed for each tile once it is sent to the 
SPE. The computation of the interpolation grid 
values was vectorized to take advantage of the 
SIMD computation engines within the SPEs in 
order to boost efficiency. 

Because the interpolation grid is non-uniform, 
and because the number of output points is 

input points, the scaling and offset factor 
between the raw and interpolated data may be 
different. This implies that a particular input tile 
may produce zero, one, or more than one output 
tiles. This alters the typical get-tile/put-tile loop 
that the SPEs would normally execute in a 
simple image processing operation and requires 
the use of a nested input-output loop structure.  

In addition, the memory alignment that i

permitted to be independent from the number of 

s 

s accomplished 

mark was run for various image sizes 

required for efficient DMA requires that the data 
in the output buffer be properly aligned, which 
requires additional data movement within the 
SPE that is an overhead factor. 

Data-flow management wa
through the use of Mercury’s MultiCore 
Framework (MCF). This middleware permitted 
the dataflow to be managed through the use of 
the “tile channel” construct, which automatically 
partitions and synchronizes the scatter-gather 
dataflow between the main XDR memory and 
the SPEs’ local store memory. Processing on the 
SPEs was accelerated through the use of 
Mercury’s Scientific Algorithm Library (SAL) in 
order to exploit the SIMD engines on the SPEs.  

Results 
The bench
and numbers of SPEs to examine scalability. The 
image sizes were varied independently in both 
range and azimuth. The results show a high 
degree of scalability of the algorithm. Processing 
of a 10k x 10k image was estimated to take 
approximately 1/17 of the aperture collection 
time. Future work will include further 
optimization of the code and investigation of 
larger image sizes. 
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 Total processing time:  4.21 sec. (23.8 Mpixel/sec) 
 

  Synthetic Aperture Time (sec): 73.86 sec. 
      Range Interpolation: 1.86 sec (53.8 M
      Cornerturn: 0.11 sec  (909 Mpixel/sec) 
      Azimuth Interpolation: 1  (53.8 Mpixel/sec) 
      Cornerturn: 0.11 sec  (909 Mpixel/sec) 
      Range Compress: 0.08 sec  (1250 Mpixel/sec)
      Cornerturn: 0.11 sec  (909 Mpixel/sec) 
      Azimuth Compress: 0.08 (1250 Mpixel/sec)
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