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Outline
•

 
COTS Heterogeneous systems:

 Processors + FPGAs
•

 
VSIPL++ & the VForce framework

•
 

Runtime hardware binding and runtime 
resource management 

•
 

Results: 
–

 
FFT on Cray XD1:  

•
 

Measuring VForce overhead
–

 
Beamforming on 

•
 

Mercury VME system
•

 
Cray XD1

•
 

Future directions
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www.cray.com/products/xd1/
•

 

Xilinx Virtex 2s paired with AMD 
Opteron nodes

•

 

RapidArray interconnect

Cray XD1

Heterogeneous Reconfigurable Systems

http://www.mc.com/products/
•

 

Interchangeable PPC and FPGA 
daughtercards housed in chassis

•

 

Race++, RapidIO interconnect

Mercury PowerStream
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Portability for Heterogeneous 
Processing

•
 

All systems contain common elements:
–

 

Microprocessors
–

 

Distributed memory
–

 

Special-purpose computing resources
•

 

FPGAs are our focus
•

 

also GPUs, DSPs, Cell ...
–

 

Communication channels
•

 
Currently no support for application portability 

across different platforms
•

 
Redesign required for hardware upgrades, 

move to new architecture
•

 
Focus on commonalities, abstract away differences

•
 

Deliver performance
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What is VSIPL++  ?

•
 

Implementation can be 
optimized for a given 
platform
–

 

run-time performance 
depends on 
implementation

–

 

Different 
implementations of 
VSIPL++ are available 
from different vendors

C LIB
PPC

GPP
PPC

VSIPL SAL PPCPERF

USER PROGRAM

VSIPL++

•
 

An open API standard from HPEC-SI
•

 
A library of common signal processing functions
–

 

Data objects interact intuitively with processing objects
–

 

High level interfaces ease development
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VForce: Extending VSIPL++
•

 
VForce: a middleware framework 

•
 

adds support for special purpose processors 
(SPPs) to VSIPL++
–

 
Currently FPGAs

•
 

Programmer uses VSIPL++ processing and data 
objects
–

 
Custom processing objects utilize a Generic 
Hardware Object (GHO) that interacts with VForce

–
 

Run time resource manager uses SPP 
implementations when available (defaults to software) 

•
 

Standard API between processing objects and 
hardware resources
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VForce: Extending VSIPL++
•

 
Sits on top of VSIPL++  
–

 
Implementation Independent

•
 

Custom processing objects:
–

 
Overload a subset of VSIPL++ functions

–
 

Add new higher level functions → SPP's strength

LIBC
PPC

PPC
PPC

VSIPL SAL PPCPERF SPP

 
SPECIFIC

 
IMPL.

USER PROGRAM

VSIPL++
SPP VSIPL++
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VForce API
•

 
Generic Hardware Object (GHO) 
implements a standard API:
–

 
Move data to and from the Special Purpose 
Processor (SPP)

–
 

Configure algorithm parameters
–

 
Initialize and finalize SPP kernels

–
 

Start processing
–

 
Check interrupt status

•
 

A processing object uses these hardware 
functions to interact with the SPP
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Dynamically Loaded Shared 
Objects (DLSO)

•
 

Generic Hardware Object (GHO) is hardware independent
•

 
Use dynamically loaded shared objects(DLSO) to control 
a specific SPP

•
 

Each type of SPP requires a pre-compiled DLSO that 
converts the standard VForce API into vendor specific 
calls

•
 

Separation of hardware concerns from user code and 
from binary until run time

•
 

Which DLSO and device?
–

 

Determined by a Run Time Resource Manager (RTRM)
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Control and Data Flow

Control
Data
Bitstream

Processing Kernel Library

Manager

Runtime Resource Manager

FPGA

Processing
Kernel

API

VSIPL++ Data

Processing Object

Hardware Object

VSIPL++ User Program

DLSO

DLSO

API

DLSO Library

IPC
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VForce Framework Benefits
•

 
VSIPL++ code easily migrates from one hardware 
platform to another

•
 

Specifics of hardware platform encapsulated in 
the manager and DLSOs

•
 

Handles multiple CPUs, multiple FPGAs 
efficiently

•
 

Programmer need not worry about details or 
availability of types of processing elements

•
 

Resource manager enables run time services: 
–

 
fault-tolerance

–
 

load balancing
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Extending Vforce
•

 
Adding Hardware Support:
–

 
Hardware DLSO

–
 

Processing Kernels
•

 

Can be generated by a compiler or manually
•

 
Adding Processing Objects:
–

 
Write a new processing class

•

 

Use GHO to interface with hardware
•

 

Include software failsafe implementation
–

 
Corresponding processing kernel

•
 

One to many mapping of processing objects to 
kernels
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Vforce FFT Processing Object
•

 
Matches functionality of the FFT class within 
VSIPL++
–

 
Uses VSIPL++ FFT for SW implementation

•
 

Cray XD1 FPGA Implementation
–

 
Supports 8 to 32k point 1D-FFT

–
 

Scaling factor and FFT size adjustable after FPGA 
configuration

–
 

Uses parameterized FFT core from Xilinx Corelib
–

 
Complex single precision floats in VSIPL++ converted 
to fixed point for computation in hardware (using NU 
floating point library) 

–
 

Dynamic scaling for improved fixed point precision
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Vforce FFT Overhead on the 
Cray XD1

•
 

Two situations examined:
1)Vforce HW vs. Native API HW

•
 

Currently the default operation when SPP present, 
even if the CPU is faster

•
 

Run times include data transfer and IPC
2)Vforce SW vs. VSIPL++ SW

•
 

Vforce SW the fall back mode on SPP error or 
negative response from RTRM

•
 

Includes IPC
•

 
In both cases Vforce delays instantiation of the 
VSIPL++ FFT until it is used
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1) Native HW Performance
•

 
Includes one FPGA 
configuration & 
multiple uses:
–

 
Configuration time 
amortized over number 
of iterations

•
 

Time of an individual 
iteration is dominated 
by communication time

 (control setup)
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1) HW Overhead
•

 
Can see the effects of 
data copying
–

 
XD1 needs page 
aligned DMA buffers

–
 

Assuming VSIPL++ 
views opaque:

•

 

There is one copy from a 
view into a DMA-able 
block

•

 

We plan to look at using 
user admitted views

•
 

No concurrent 
processing

•
 

Current DLSO sets up 
DMA every time
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2) VSIPL++ FFT Performance
•

 
VSIPL++ Reference 
Version 1.01

•
 

Large setup time
–

 
Same for VSIPL++ SW 
FFT and Vforce FFT
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3) Vforce SW Overhead
•

 
Vforce FFT uses the 
VSIPL++ FFT

•
 

Difference in performance 
is overhead
–

 

RTRM running, always no 
hardware available

–

 

Defaults to SW
–

 

Only check once for 
available hardware

•
 

Both versions show approx 
same speedup
–

 

Variation due to 
measurement error
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Beamforming: Spatial Filter
•

 
A collection of techniques 
used to steer an array of 
sensors and form beam 
patterns to null 
interference

•
 

Applications in radar, 
sonar, medical imaging, 
wireless communication

d 1

d 2

Propagating  Wave
Direction of Focus

Propagation Delay
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Beamformer Implementation

•

 

Weights computed periodically 
–

 

in software
•

 

Weights applied (multiply 
accumulate)
–

 

in hardware or software
•

 

Implemented on 
–

 

Mercury 6U VME (version 1.1)
–

 

Cray XD1 (version 1.2)

• 3-D time-domain beamformer, adaptive weights
• Single precision floating point operators at every stage
• Hybrid hardware/software implementation

Weight
Computation

Weight
Application

weights

sensor data parameter 
data

results
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Beamformer: MCS 6U VME

•
 

Data transfer dominates beamforming
•

 
Implemented before non-blocking data 
transfer implemented
–

 
Vforce version 1.1

–
 

Now Vforce version can run weight 
computation while data is being transferred 
to FPGA

•
 

Overall speedup ranges from ~1.2 to >200
–

 
Largest speedups on unrealistic scenarios

•
 

Many beams, few sensors
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•

 

Weight application performance improves 
linearly as a function of sensors 

•

 

Weight computation run-time increases as 
a function of sensors

•

 

At 1000 beams, weight application run-

 
time limited by result data transfer
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•

 

As the number of beams increases, more 
processing is performed per block of sensor 
data

•

 

Performance gain increases as a function of 
beams

•

 

The gain is limited by the time required to 
transfer results
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•

 

Performance gain is heavily impacted by 
the rate at which weights are computed 
and result data is transferred

•

 

More data transfers when the update 
period is small
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Beamformer: Cray XD1
•

 
Uses Vforce 1.2 with non-blocking data transfers
–

 
Double buffer incoming sensor data

–
 

Stream results back to CPU as produced
–

 
Much higher levels of concurrency

–
 

Data transfer almost completely hidden
•

 

Don't get the same performance hit with smaller update 
periods that the Mercury implementation did

•
 

Smaller update periods on XD1
–

 
More powerful CPU on XD1 allows for more frequent 
weight computation

•
 

Different hardware accumulator
–

 
Not as fast as the one used in the Mercury beamformer
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Cray XD1 Test Scenarios
•

 
All combinations (powers of 2) of the following:
–

 
4 to 64 sensors

–
 

1 to 128 beams
–

 
1024 to max allowed time steps per update period, 
limited by 4 MB RAM banks (varies with sensors)

–
 

Weight computation history of 5 consecutive powers of 
2 ending with half the update period

•
 

Speedup of 1.22 to 4.11 for entire application
–

 
Excluded extreme values (i.e. 10,000 beams)

–
 

Much smaller update periods balance CPU/FPGA 
computation time but limit maximum speedup
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Performance vs Beams
•

 
HW provides a relatively 
constant ~3.5x speedup 
for weight application

•
 

Irregularity in weight 
computation causes initial 
unpredictability

•
 

This example:
–

 

32 sensors
–

 

2048 time steps update 
period

–

 

1024 past time steps used in 
weight computation
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SW Weight Computation 
Performance

16 Beams; 16 Sensors2048 update period; 1024 past time steps
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Performance vs Sensors
• Large jump in weight 

computation at 64 sensors
– Weight computation runtime 

dominates
– Limits possible speedup

• This scenario:
– 32 beams
– 4096 time steps update 

period
– 256 past time steps used in 

weight computation
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Performance vs Update Period
•

 
Larger update period 
corresponds to fewer 
weight computations
–

 
Makes up less of total 
runtime

–
 

Ratio doesn't have a 
consistent relationship
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Performance vs Update Period
•

 
Results in irregular total 
application speedup

•
 

Weight application times 
are relatively constant
–

 

Smaller update times don't 
negatively impact 
performance (as they did in 
the Vforce 1.1version)

•
 

This scenario
–

 

16 beams
–

 

16 sensors
–

 

512 past time steps used in 
weight computation
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Concurrency
•

 
Extension of VSIPL++ 
serial specification

•
 

Generally hide the shorter 
of weight computation and 
weight application

•
 

Speedups better than 
Amdahl's law normally 
allows due to overlapping 
of operations

•
 

Take advantage of HW



Concurrency

•
 

Not to scale
•

 
Everything overlapped except sending parameters
–

 
Not double buffered

Send Data

Send
Parameters

Weight
Application

Get Results

Weight
Computation

Time

33
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Implementation Comparison
•

 
Even with the much 
shorter update period, the 
XD1 version exhibits 
comparable performance
–

 

Cray has constant update 
period of 8192 time steps

–

 

Mercury update period 
varies from 256K to 16K

–

 

Sensors & history match
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Results Comparison
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Future Directions
•

 
Support for new platforms
–

 
SGI RASC

–
 

SRC SRC-7
–

 
GPUs, DSPs, CELL SPEs

•
 

Move beyond master-slave model of processing 
and communication
–

 
FPGA to FPGA communication not currently 
implemented

•
 

Implement more complex processing kernels, 
applications

•
 

Improve performance
–

 
Identified possible mechanisms to remove the extra 
data copy



37

Conclusions

•
 

VForce
 

provides a framework for implementing 
high performance applications on 
heterogeneous processors
–

 
Code is portable

–
 

Support for a wide variety of hardware platforms
–

 
VSIPL++ programmer can take advantage of new 
architectures without changing application 
programs 

–
 

Small overhead in many cases
–

 
Unlocks SPP performance improvements in 
VSIPL++ environment



Contact:       mel@coe.neu.edu

VForce:
http://www.ece.neu.edu/groups/rcl/project/vsipl/vsipl.html
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