
Nicholas Moore, Miriam Leeser
Department of Electrical and Computer Engineering

Northeastern University, Boston MA

Laurie Smith King
Department of Mathematics and Computer Science

College of the Holy Cross, Worcester MA

Vforce:
Aiding the Productivity and Portability in

Reconfigurable Supercomputer Applications via
Runtime Hardware Binding

1

2

Outline
•

COTS Heterogeneous systems:

 Processors + FPGAs
•

VSIPL++ & the VForce framework

•

Runtime hardware binding and runtime
resource management

•

Results:
–

FFT on Cray XD1:

•

Measuring VForce overhead
–

Beamforming on

•

Mercury VME system
•

Cray XD1

•

Future directions

3

www.cray.com/products/xd1/
•

Xilinx Virtex 2s paired with AMD
Opteron nodes

•

RapidArray interconnect

Cray XD1

Heterogeneous Reconfigurable Systems

http://www.mc.com/products/
•

Interchangeable PPC and FPGA
daughtercards housed in chassis

•

Race++, RapidIO interconnect

Mercury PowerStream

4

Portability for Heterogeneous
Processing

•

All systems contain common elements:
–

Microprocessors
–

Distributed memory
–

Special-purpose computing resources
•

FPGAs are our focus
•

also GPUs, DSPs, Cell ...
–

Communication channels
•

Currently no support for application portability

across different platforms
•

Redesign required for hardware upgrades,

move to new architecture
•

Focus on commonalities, abstract away differences

•

Deliver performance

5

What is VSIPL++ ?

•

Implementation can be
optimized for a given
platform
–

run-time performance
depends on
implementation

–

Different
implementations of
VSIPL++ are available
from different vendors

C LIB
PPC

GPP
PPC

VSIPL SAL PPCPERF

USER PROGRAM

VSIPL++

•

An open API standard from HPEC-SI
•

A library of common signal processing functions
–

Data objects interact intuitively with processing objects
–

High level interfaces ease development

6

VForce: Extending VSIPL++
•

VForce: a middleware framework

•

adds support for special purpose processors
(SPPs) to VSIPL++
–

Currently FPGAs

•

Programmer uses VSIPL++ processing and data
objects
–

Custom processing objects utilize a Generic
Hardware Object (GHO) that interacts with VForce

–

Run time resource manager uses SPP
implementations when available (defaults to software)

•

Standard API between processing objects and
hardware resources

7

VForce: Extending VSIPL++
•

Sits on top of VSIPL++
–

Implementation Independent

•

Custom processing objects:
–

Overload a subset of VSIPL++ functions

–

Add new higher level functions → SPP's strength

LIBC
PPC

PPC
PPC

VSIPL SAL PPCPERF SPP

SPECIFIC

IMPL.

USER PROGRAM

VSIPL++
SPP VSIPL++

8

VForce API
•

Generic Hardware Object (GHO)
implements a standard API:
–

Move data to and from the Special Purpose
Processor (SPP)

–

Configure algorithm parameters
–

Initialize and finalize SPP kernels

–

Start processing
–

Check interrupt status

•

A processing object uses these hardware
functions to interact with the SPP

9

Dynamically Loaded Shared
Objects (DLSO)

•

Generic Hardware Object (GHO) is hardware independent
•

Use dynamically loaded shared objects(DLSO) to control
a specific SPP

•

Each type of SPP requires a pre-compiled DLSO that
converts the standard VForce API into vendor specific
calls

•

Separation of hardware concerns from user code and
from binary until run time

•

Which DLSO and device?
–

Determined by a Run Time Resource Manager (RTRM)

10

Control and Data Flow

Control
Data
Bitstream

Processing Kernel Library

Manager

Runtime Resource Manager

FPGA

Processing
Kernel

API

VSIPL++ Data

Processing Object

Hardware Object

VSIPL++ User Program

DLSO

DLSO

API

DLSO Library

IPC

11

VForce Framework Benefits
•

VSIPL++ code easily migrates from one hardware
platform to another

•

Specifics of hardware platform encapsulated in
the manager and DLSOs

•

Handles multiple CPUs, multiple FPGAs
efficiently

•

Programmer need not worry about details or
availability of types of processing elements

•

Resource manager enables run time services:
–

fault-tolerance

–

load balancing

12

Extending Vforce
•

Adding Hardware Support:
–

Hardware DLSO

–

Processing Kernels
•

Can be generated by a compiler or manually
•

Adding Processing Objects:
–

Write a new processing class

•

Use GHO to interface with hardware
•

Include software failsafe implementation
–

Corresponding processing kernel

•

One to many mapping of processing objects to
kernels

13

Vforce FFT Processing Object
•

Matches functionality of the FFT class within
VSIPL++
–

Uses VSIPL++ FFT for SW implementation

•

Cray XD1 FPGA Implementation
–

Supports 8 to 32k point 1D-FFT

–

Scaling factor and FFT size adjustable after FPGA
configuration

–

Uses parameterized FFT core from Xilinx Corelib
–

Complex single precision floats in VSIPL++ converted
to fixed point for computation in hardware (using NU
floating point library)

–

Dynamic scaling for improved fixed point precision

14

Vforce FFT Overhead on the
Cray XD1

•

Two situations examined:
1)Vforce HW vs. Native API HW

•

Currently the default operation when SPP present,
even if the CPU is faster

•

Run times include data transfer and IPC
2)Vforce SW vs. VSIPL++ SW

•

Vforce SW the fall back mode on SPP error or
negative response from RTRM

•

Includes IPC
•

In both cases Vforce delays instantiation of the
VSIPL++ FFT until it is used

15

1) Native HW Performance
•

Includes one FPGA
configuration &
multiple uses:
–

Configuration time
amortized over number
of iterations

•

Time of an individual
iteration is dominated
by communication time

 (control setup)

16

1) HW Overhead
•

Can see the effects of
data copying
–

XD1 needs page
aligned DMA buffers

–

Assuming VSIPL++
views opaque:

•

There is one copy from a
view into a DMA-able
block

•

We plan to look at using
user admitted views

•

No concurrent
processing

•

Current DLSO sets up
DMA every time

17

2) VSIPL++ FFT Performance
•

VSIPL++ Reference
Version 1.01

•

Large setup time
–

Same for VSIPL++ SW
FFT and Vforce FFT

18

3) Vforce SW Overhead
•

Vforce FFT uses the
VSIPL++ FFT

•

Difference in performance
is overhead
–

RTRM running, always no
hardware available

–

Defaults to SW
–

Only check once for
available hardware

•

Both versions show approx
same speedup
–

Variation due to
measurement error

19

Beamforming: Spatial Filter
•

A collection of techniques
used to steer an array of
sensors and form beam
patterns to null
interference

•

Applications in radar,
sonar, medical imaging,
wireless communication

d 1

d 2

Propagating Wave
Direction of Focus

Propagation Delay

20

Beamformer Implementation

•

Weights computed periodically
–

in software
•

Weights applied (multiply
accumulate)
–

in hardware or software
•

Implemented on
–

Mercury 6U VME (version 1.1)
–

Cray XD1 (version 1.2)

• 3-D time-domain beamformer, adaptive weights
• Single precision floating point operators at every stage
• Hybrid hardware/software implementation

Weight
Computation

Weight
Application

weights

sensor data parameter
data

results

21

Beamformer: MCS 6U VME

•

Data transfer dominates beamforming
•

Implemented before non-blocking data
transfer implemented
–

Vforce version 1.1

–

Now Vforce version can run weight
computation while data is being transferred
to FPGA

•

Overall speedup ranges from ~1.2 to >200
–

Largest speedups on unrealistic scenarios

•

Many beams, few sensors

22

•

Weight application performance improves
linearly as a function of sensors

•

Weight computation run-time increases as
a function of sensors

•

At 1000 beams, weight application run-

time limited by result data transfer

100016k646420
100032k1283216
100064k2561612
1000128k51288
1000256k102444

BeamsPeriodEqnsSenExp

BeamformingWeight Application

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Performance as a Function of Sensors

Number of Sensors

P
er

fo
rm

an
ce

 F
ac

to
r

23

100016k646420
10016k646419

1016k646418
116k646417

BeamsPeriodEqnsSenExp

BeamformingWeight Application

1 10 100 1000
0

10

20

30

40

50

60

70

Performance as a Function of Beams

Number of Beams

P
er

fo
rm

an
ce

 F
ac

to
r

•

As the number of beams increases, more
processing is performed per block of sensor
data

•

Performance gain increases as a function of
beams

•

The gain is limited by the time required to
transfer results

24

10000256k646425
10000128k646424
1000064k646423
1000032k646422
1000016k646421
BeamsPeriodEqnsSenExp

BeamformingWeight Application

256K 128K 64K 32K 16K
0

100

200

300

400

500

600

700

Performance as a Function of Communication

Samples per Update Period

P
er

fo
rm

an
ce

 F
ac

to
r

•

Performance gain is heavily impacted by
the rate at which weights are computed
and result data is transferred

•

More data transfers when the update
period is small

25

Beamformer: Cray XD1
•

Uses Vforce 1.2 with non-blocking data transfers
–

Double buffer incoming sensor data

–

Stream results back to CPU as produced
–

Much higher levels of concurrency

–

Data transfer almost completely hidden
•

Don't get the same performance hit with smaller update
periods that the Mercury implementation did

•

Smaller update periods on XD1
–

More powerful CPU on XD1 allows for more frequent
weight computation

•

Different hardware accumulator
–

Not as fast as the one used in the Mercury beamformer

26

Cray XD1 Test Scenarios
•

All combinations (powers of 2) of the following:
–

4 to 64 sensors

–

1 to 128 beams
–

1024 to max allowed time steps per update period,
limited by 4 MB RAM banks (varies with sensors)

–

Weight computation history of 5 consecutive powers of
2 ending with half the update period

•

Speedup of 1.22 to 4.11 for entire application
–

Excluded extreme values (i.e. 10,000 beams)

–

Much smaller update periods balance CPU/FPGA
computation time but limit maximum speedup

27

Performance vs Beams
•

HW provides a relatively
constant ~3.5x speedup
for weight application

•

Irregularity in weight
computation causes initial
unpredictability

•

This example:
–

32 sensors
–

2048 time steps update
period

–

1024 past time steps used in
weight computation

28

SW Weight Computation
Performance

16 Beams; 16 Sensors2048 update period; 1024 past time steps

29

Performance vs Sensors
• Large jump in weight

computation at 64 sensors
– Weight computation runtime

dominates
– Limits possible speedup

• This scenario:
– 32 beams
– 4096 time steps update

period
– 256 past time steps used in

weight computation

30

Performance vs Update Period
•

Larger update period
corresponds to fewer
weight computations
–

Makes up less of total
runtime

–

Ratio doesn't have a
consistent relationship

31

Performance vs Update Period
•

Results in irregular total
application speedup

•

Weight application times
are relatively constant
–

Smaller update times don't
negatively impact
performance (as they did in
the Vforce 1.1version)

•

This scenario
–

16 beams
–

16 sensors
–

512 past time steps used in
weight computation

32

Concurrency
•

Extension of VSIPL++
serial specification

•

Generally hide the shorter
of weight computation and
weight application

•

Speedups better than
Amdahl's law normally
allows due to overlapping
of operations

•

Take advantage of HW

Concurrency

•

Not to scale
•

Everything overlapped except sending parameters
–

Not double buffered

Send Data

Send
Parameters

Weight
Application

Get Results

Weight
Computation

Time

33

34

Implementation Comparison
•

Even with the much
shorter update period, the
XD1 version exhibits
comparable performance
–

Cray has constant update
period of 8192 time steps

–

Mercury update period
varies from 256K to 16K

–

Sensors & history match

35

Results Comparison

36

Future Directions
•

Support for new platforms
–

SGI RASC

–

SRC SRC-7
–

GPUs, DSPs, CELL SPEs

•

Move beyond master-slave model of processing
and communication
–

FPGA to FPGA communication not currently
implemented

•

Implement more complex processing kernels,
applications

•

Improve performance
–

Identified possible mechanisms to remove the extra
data copy

37

Conclusions

•

VForce

provides a framework for implementing
high performance applications on
heterogeneous processors
–

Code is portable

–

Support for a wide variety of hardware platforms
–

VSIPL++ programmer can take advantage of new
architectures without changing application
programs

–

Small overhead in many cases
–

Unlocks SPP performance improvements in
VSIPL++ environment

Contact: mel@coe.neu.edu

VForce:
http://www.ece.neu.edu/groups/rcl/project/vsipl/vsipl.html

38

mailto:mel@coe.neu.edu
http://www.ece.neu.edu/groups/rcl/project/vsipl/vsipl.html

	Vforce: �Aiding the Productivity and Portability in Reconfigurable Supercomputer Applications via Runtime Hardware Binding�
	Outline
	Heterogeneous Reconfigurable Systems
	Portability for Heterogeneous Processing
	What is VSIPL++ ?
	VForce: Extending VSIPL++
	VForce: Extending VSIPL++
	VForce API
	Dynamically Loaded Shared Objects (DLSO)
	Control and Data Flow
	VForce Framework Benefits
	Extending Vforce
	Vforce FFT Processing Object
	Vforce FFT Overhead on the Cray XD1
	1) Native HW Performance
	1) HW Overhead
	2) VSIPL++ FFT Performance
	3) Vforce SW Overhead
	Beamforming: Spatial Filter
	Beamformer Implementation
	Beamformer: MCS 6U VME
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Beamformer: Cray XD1
	Cray XD1 Test Scenarios
	Performance vs Beams
	SW Weight Computation Performance
	Performance vs Sensors
	Performance vs Update Period
	Performance vs Update Period
	Concurrency
	Concurrency
	Implementation Comparison
	Results Comparison
	Future Directions
	Conclusions
	Slide Number 38

