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VSIPL++ for Reconfigurable Computing (Vforce) is a 
middleware framework that extends VSIPL++ (a C++ 
extension of the Vector, Signal, and Image Processing 
Library) to include support for special purpose processors 
(SPPs) [1, 2].  VSIPL++1 provides a collection of object-
oriented interfaces to commonly used signal processing 
algorithms with the goal of aiding performance, 
portability, and productivity.  While multiple VSIPL++ 
implementations exist, they all provide software only 
solutions that do not take advantage of special purpose 
hardware available on recent reconfigurable 
supercomputers.  For some applications, this hardware can 
provide significant performance improvements over 
general purpose CPUs. 

Vforce makes hardware implementations for signal 
processing algorithms seamlessly available to the 
VSIPL++ programmer. In VSIPL++, the programmer 
interacts with processing objects that realize algorithms in 
software.  We extend this model by allowing a processing 
object to refer to a single Generic Hardware Object that 
abstracts details of programming special purpose hardware 
and transferring data.  The same GHO is called by the user 
for all types of hardware targeted.  The combination of a 
GHO with Dynamically Linked Shared Objects (DLSOs) 
makes Vforce able to adapt to different types of hardware 
at run time, making it more dynamic.  In addition, we 
present new results using Vforce on a Cray XD1.2   

The Vforce Framework 

 

                                                

As shown in Figure 1, Vforce consists of several 
components that work together to provide hardware 
abstraction.  With both VSIPL++ and Vforce the 
application programmer uses processing objects that  
provide a software implementation of the given algorithm.  
However, each Vforce processing object also provides a 
second implementation that allows the algorithm to be run 
on a SPP.  The SPP implementation utilizes Vforce's GHO 
which provides a common API for interacting with SPPs.  
This API provides for configuration, control, and data 
transfer for SPPs.  When a particular algorithm is called by 
the user application, the GHO requests hardware capable 
of executing that algorithm from the Run Time Resource 
Manager.  The RTRM exists as a separate process from the 
user application and manages and allocates the SPP 
resources available on any given machine.  

 
1 http://www.hpec-si.org
 
2 http://www.cray.com/products/xd1/
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Figure 1: Processing Object Framework 

Once the RTRM receives a request, it examines its library 
of kernels for a suitable implementation.  The manager's 
reply contains two items: which hardware, if any, to use 
and which DLSO to use to control the specified hardware.  
The GHO will look in the DLSO for a specific set of 
functions that implement the API provided by the GHO.  
These functions call the SPP's native API completing the 
determination of low-level machine specific code from the 
abstract GHO interface.  If there is an error at any part of 
this process, the processing object transparently defaults to 
the software implementation.  Once the user application is 
done with the hardware, the GHO will return the SPP to 
the RTRM. 
Vforce provides portability and runtime adaptability.  Both 
the user application and processing objects can be 
developed without knowledge of a SPP's API, capabilities, 
or presence.  The program is even compiled without this 
information, as the appropriate control code is loaded into 
the binary at run time, allowing Vforce applications to 
support heterogeneous or dynamically changing systems, 
as well as allowing the same application code to compile 
on multiple systems with minimal effort. 
The framework is also extensible and enables high levels 
of code reuse.  A DLSO only needs to be written once per 
SPP API, and can be shared by all applications accessing a 
specific type of SPP.  The manager may require some 
machine specific behavior, but will only need to be written 

http://www.hpec-si.org/
http://www.cray.com/products/xd1/


 

                                                

at most once per platform.  In many cases, a generic 
manager that uses the same DLSOs as the user application 
can be used.  Finally, to add individual algorithms, the 
software processing class only needs to be written once per 
algorithm and can be shared among platforms and 
applications.  A hardware kernel created for the given 
algorithm must also be provided.  These can be created by 
domain experts or through the use of high-level language 
compiler tools.  The kernel can then be reused to accelerate 
many different programs.  Vforce does not specify 
anything that needs to be implemented in hardware, which 
allows vendors and hardware designers to easily 
incorporate existing designs.  The strength of Vforce lies 
in this reuse of code across platforms and SPP kernels 
across applications combined with freeing application 
programmers from dealing with low-level machine 
specific details. 
Efforts have been made to minimize the performance 
impact of Vforce.  The RTRM does not handle any data 
transfer, avoiding a potential bottleneck.  The manager 
may perform initial configuration of an SPP, such as 
loading a bitstream onto an FPGA, but once an SPP is 
delivered to a user program all communication is direct 
between the user program and hardware.  The manager 
keeps track of which kernels are loaded onto which SPPs 
and will favor pre-loaded SPPs in an attempt to minimize 
configuration overhead.  In addition, data copying is kept 
to a minimum, but cannot always be eliminated due to the 
opaque nature of data blocks in VSIPL++. 

Applications & Performance 
To date, the main targets for Vforce have been the Cray 
XD1 and a Mercury 6U VME system.  An FFT processing 
object has been developed that closely mimics the FFT 
specified by VSIPL++.  The new FFT can be used as a 
drop in replacement for the VSIPL++ FFT while enabling 
SPP use.  It also extends the VSIPL++ version by 
providing support for concurrent execution of the FFT on 
the SPP with other code on the CPU. 
A Cray XD1 FFT bitstream was created using a Xilinx 
Coregen FFT kernel.  The conversions between float and 
fixed point representation necessary to utilize the 24-bit 
fixed point FFT kernel and the final floating point scaling 
operation are handled by the Northeastern Univ.  Vfloat 
library3.  Additionally, the bitstream dynamically scales 
the fixed point representation to maximize precision when 
data with smaller dynamic ranges is used.   
The FFT bitstream was used to study the overhead 
imposed by Vforce.  Four scenarios were examined: 1) 
Using the native C API to use the FFT bitstream. 2) Using 
the Vforce stack to utilize the FFT bitstream. 3) Running 
the VSIPL++ software FFT. 4) Running the Vforce 
framework with no bitstream available so that the software 
fall-back FFT is run.  For all four scenarios a wide variety 
of iterations and FFT size combinations were 
benchmarked.  Comparing the first two cases looks at the 

 
3 http://www.ece.neu.edu/groups/rcl/projects.html
 

overhead when dealing with hardware, while the second 
two cases examine the overhead of the software alone.  
The hardware comparison illustrated the overhead 
associated with copying data out of VSIPL++ views and 
into buffers of known organization.  The impact of the data 
copying grows as the FFT data size grows.  We are 
investigating ways to minimize this data copying.  In the 
software comparison, the overhead due to Vforce 
compared to that using VSIPL++ is minimal.  Differences 
in runtime of up to 3% were discovered.   
A second application, developed for the Cray XD1 and 
Mercury 6U VME systems, is a 3D time-domain 
beamformer with adaptive weights.  Beamforming was 
chosen because it provides an application where 
concurrent processing could be exploited.  The weighted 
multiply accumulate step runs on the SPP while the weight 
update calculations are done on the CPU.  The Mercury 
implementation, tested over a large combination of 
numbers of beams, sensors, and weight update periods, 
showed a speedup over the software only version ranging 
from 1.2 to over 200, with the best speedups coming in 
less realistic scenarios.  The weight update computation 
completely dominated the total runtime.  When 
considering the SPP implementation, the data transfer 
dominates. 
The version of Vforce used for the Mercury 
implementation did not support non-blocking DMA 
transfer, limiting the amount of concurrent activity that 
could be supported.  The newer Vforce version used for 
the XD1 beamformer does support non-blocking data 
transfers.  The Cray XD1 implementation utilizes this by 
double buffering the input data sent to the FPGA, allowing 
the general purpose processor to compute weights while 
the FPGA DMA engine pulls new data to the FPGA at the 
same time as streaming back the results of the ongoing 
weighted multiply accumulate operation.  However, the 
implementation does not double buffer the array parameter 
data, forcing the FPGA to pause for weight updates.  
Despite this, a larger level of concurrency is able to be 
achieved on the XD1 by hiding data transfers.  In addition, 
the data transfer is relatively minor compared to the FPGA 
processing time, which allowed for more simultaneous 
processing by the FPGA and CPU. 

Conclusions & Future Work 
The Vforce framework supports portability across a variety 
of platforms and SPPs with minimal overhead.  In the 
future, we plan to expand support to include more 
platforms, including GPUs, the Cell processor, and other 
reconfigurable supercomputers, as well as to develop more 
demo applications. 
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