
Vforce: Aiding the Productivity and Portability in Reconfigurable
Supercomputer Applications via Runtime Hardware Binding
Nicholas Moore, Miriam Leeser

{nmoore, mel}@ece.neu.edu
Dept. of Electrical and Computer Engineering

Northeastern University, Boston, MA

Laurie Smith King
lking@holycross.edu

Dept. of Computer Science and Mathematics
College of the Holy Cross, Worcester, MA

VSIPL++ for Reconfigurable Computing (Vforce) is a
middleware framework that extends VSIPL++ (a C++
extension of the Vector, Signal, and Image Processing
Library) to include support for special purpose processors
(SPPs) [1, 2]. VSIPL++1 provides a collection of object-
oriented interfaces to commonly used signal processing
algorithms with the goal of aiding performance,
portability, and productivity. While multiple VSIPL++
implementations exist, they all provide software only
solutions that do not take advantage of special purpose
hardware available on recent reconfigurable
supercomputers. For some applications, this hardware can
provide significant performance improvements over
general purpose CPUs.

Vforce makes hardware implementations for signal
processing algorithms seamlessly available to the
VSIPL++ programmer. In VSIPL++, the programmer
interacts with processing objects that realize algorithms in
software. We extend this model by allowing a processing
object to refer to a single Generic Hardware Object that
abstracts details of programming special purpose hardware
and transferring data. The same GHO is called by the user
for all types of hardware targeted. The combination of a
GHO with Dynamically Linked Shared Objects (DLSOs)
makes Vforce able to adapt to different types of hardware
at run time, making it more dynamic. In addition, we
present new results using Vforce on a Cray XD1.2

The Vforce Framework

As shown in Figure 1, Vforce consists of several
components that work together to provide hardware
abstraction. With both VSIPL++ and Vforce the
application programmer uses processing objects that
provide a software implementation of the given algorithm.
However, each Vforce processing object also provides a
second implementation that allows the algorithm to be run
on a SPP. The SPP implementation utilizes Vforce's GHO
which provides a common API for interacting with SPPs.
This API provides for configuration, control, and data
transfer for SPPs. When a particular algorithm is called by
the user application, the GHO requests hardware capable
of executing that algorithm from the Run Time Resource
Manager. The RTRM exists as a separate process from the
user application and manages and allocates the SPP
resources available on any given machine.

1 http://www.hpec-si.org

2 http://www.cray.com/products/xd1/

Control
Data
Bitstream

Processing Kernel Library

Manager

Runtime Resource Manager

FPGA

Processing
Kernel

API

VSIPL++ Data

Processing Object

Hardware Object

VSIPL++ User Program

DLSO

DLSO

API

DLSO Library

IPC

Figure 1: Processing Object Framework

Once the RTRM receives a request, it examines its library
of kernels for a suitable implementation. The manager's
reply contains two items: which hardware, if any, to use
and which DLSO to use to control the specified hardware.
The GHO will look in the DLSO for a specific set of
functions that implement the API provided by the GHO.
These functions call the SPP's native API completing the
determination of low-level machine specific code from the
abstract GHO interface. If there is an error at any part of
this process, the processing object transparently defaults to
the software implementation. Once the user application is
done with the hardware, the GHO will return the SPP to
the RTRM.
Vforce provides portability and runtime adaptability. Both
the user application and processing objects can be
developed without knowledge of a SPP's API, capabilities,
or presence. The program is even compiled without this
information, as the appropriate control code is loaded into
the binary at run time, allowing Vforce applications to
support heterogeneous or dynamically changing systems,
as well as allowing the same application code to compile
on multiple systems with minimal effort.
The framework is also extensible and enables high levels
of code reuse. A DLSO only needs to be written once per
SPP API, and can be shared by all applications accessing a
specific type of SPP. The manager may require some
machine specific behavior, but will only need to be written

http://www.hpec-si.org/
http://www.cray.com/products/xd1/

at most once per platform. In many cases, a generic
manager that uses the same DLSOs as the user application
can be used. Finally, to add individual algorithms, the
software processing class only needs to be written once per
algorithm and can be shared among platforms and
applications. A hardware kernel created for the given
algorithm must also be provided. These can be created by
domain experts or through the use of high-level language
compiler tools. The kernel can then be reused to accelerate
many different programs. Vforce does not specify
anything that needs to be implemented in hardware, which
allows vendors and hardware designers to easily
incorporate existing designs. The strength of Vforce lies
in this reuse of code across platforms and SPP kernels
across applications combined with freeing application
programmers from dealing with low-level machine
specific details.
Efforts have been made to minimize the performance
impact of Vforce. The RTRM does not handle any data
transfer, avoiding a potential bottleneck. The manager
may perform initial configuration of an SPP, such as
loading a bitstream onto an FPGA, but once an SPP is
delivered to a user program all communication is direct
between the user program and hardware. The manager
keeps track of which kernels are loaded onto which SPPs
and will favor pre-loaded SPPs in an attempt to minimize
configuration overhead. In addition, data copying is kept
to a minimum, but cannot always be eliminated due to the
opaque nature of data blocks in VSIPL++.

Applications & Performance
To date, the main targets for Vforce have been the Cray
XD1 and a Mercury 6U VME system. An FFT processing
object has been developed that closely mimics the FFT
specified by VSIPL++. The new FFT can be used as a
drop in replacement for the VSIPL++ FFT while enabling
SPP use. It also extends the VSIPL++ version by
providing support for concurrent execution of the FFT on
the SPP with other code on the CPU.
A Cray XD1 FFT bitstream was created using a Xilinx
Coregen FFT kernel. The conversions between float and
fixed point representation necessary to utilize the 24-bit
fixed point FFT kernel and the final floating point scaling
operation are handled by the Northeastern Univ. Vfloat
library3. Additionally, the bitstream dynamically scales
the fixed point representation to maximize precision when
data with smaller dynamic ranges is used.
The FFT bitstream was used to study the overhead
imposed by Vforce. Four scenarios were examined: 1)
Using the native C API to use the FFT bitstream. 2) Using
the Vforce stack to utilize the FFT bitstream. 3) Running
the VSIPL++ software FFT. 4) Running the Vforce
framework with no bitstream available so that the software
fall-back FFT is run. For all four scenarios a wide variety
of iterations and FFT size combinations were
benchmarked. Comparing the first two cases looks at the

3 http://www.ece.neu.edu/groups/rcl/projects.html

overhead when dealing with hardware, while the second
two cases examine the overhead of the software alone.
The hardware comparison illustrated the overhead
associated with copying data out of VSIPL++ views and
into buffers of known organization. The impact of the data
copying grows as the FFT data size grows. We are
investigating ways to minimize this data copying. In the
software comparison, the overhead due to Vforce
compared to that using VSIPL++ is minimal. Differences
in runtime of up to 3% were discovered.
A second application, developed for the Cray XD1 and
Mercury 6U VME systems, is a 3D time-domain
beamformer with adaptive weights. Beamforming was
chosen because it provides an application where
concurrent processing could be exploited. The weighted
multiply accumulate step runs on the SPP while the weight
update calculations are done on the CPU. The Mercury
implementation, tested over a large combination of
numbers of beams, sensors, and weight update periods,
showed a speedup over the software only version ranging
from 1.2 to over 200, with the best speedups coming in
less realistic scenarios. The weight update computation
completely dominated the total runtime. When
considering the SPP implementation, the data transfer
dominates.
The version of Vforce used for the Mercury
implementation did not support non-blocking DMA
transfer, limiting the amount of concurrent activity that
could be supported. The newer Vforce version used for
the XD1 beamformer does support non-blocking data
transfers. The Cray XD1 implementation utilizes this by
double buffering the input data sent to the FPGA, allowing
the general purpose processor to compute weights while
the FPGA DMA engine pulls new data to the FPGA at the
same time as streaming back the results of the ongoing
weighted multiply accumulate operation. However, the
implementation does not double buffer the array parameter
data, forcing the FPGA to pause for weight updates.
Despite this, a larger level of concurrency is able to be
achieved on the XD1 by hiding data transfers. In addition,
the data transfer is relatively minor compared to the FPGA
processing time, which allowed for more simultaneous
processing by the FPGA and CPU.

Conclusions & Future Work
The Vforce framework supports portability across a variety
of platforms and SPPs with minimal overhead. In the
future, we plan to expand support to include more
platforms, including GPUs, the Cell processor, and other
reconfigurable supercomputers, as well as to develop more
demo applications.
1. Moore, N., et al., Vforce: An Extensible Framework for
Reconfigurable Supercomputing. Computer, 2007. 40(3): p. 39-
49.
2. Moore, N., et al., Writing Portable Applications that
Dynamically Bind at Run Time to Reconfigurable
Hardware, in Field Programmable Custom Computing
Machines. 2007, IEEE.

http://www.ece.neu.edu/groups/rcl/projects.html

