
The World Leader in High Performance Signal Processing Solutions

Multi-core programming
frameworks for embedded systems

Kaushal Sanghai and Rick Gentile
Analog Devices Inc.,

Norwood, MA

Outline

Multi-core programming challenge

Framework requirements

Framework Methodology

Multimedia data-flow analysis

BF561 dual-core architecture analysis

Framework models

Combining Frameworks

Results

Conclusion

Multi-core Programming Challenge

To meet the growing processing demands placed by embedded
applications, multi-core architectures have emerged as a promising
solution

Embedded developers strive to take advantage of extra core(s) without a
corresponding increase in programming complexity

Ideally, the performance increase should approach “N” times where “N” is
the number of cores

Managing shared-memory and inter-core communications makes the
difference!

Developing a framework to manage code and data will help to speed
development time and ensure optimal performance

We target some compute intensive and high bandwidth applications on an
embedded dual-core processor

Framework requirements

Scalable across multiple cores

Equal load balancing between all cores

A core data item request is always met at the L1 memory level

Minimum possible data memory footprint

Framework methodology

Understanding the parallel data-flow of the application with
respect to spatial and temporal locality

Efficiently mapping the data-flow to the private and shared
resources of the architecture

Multimedia Data-flow Analysis

GOP
Frame Slice Macro-block

Greater level of synchronization

Increased network traffic/memory requirements

GOP
Frame Slice Macro-block

Greater level of synchronization

Increased network traffic/memory requirements

ADSP-BF561 Dual-core Architecture
Analysis

Dual-Core
architecture

Private L1 code
and Data memory

Shared L2 and
external memory

4 Memory DMA
channels

Shared peripheral
interface

L2 shared and Unified
Code and Data (128KB)

SDRAM (L3)
4x(16 – 128 MB)

SRAM
SRAM/Cache

L1 Code (32KB)

Core A Core B

L1 Data (64KB)

9 cclk

8-10 sclk

8-10 sclk

1 cclk

Framework models

Slice/Line processing

Macro-block processing

Frame processing

GOP processing

Framework design

Data moved directly from the peripheral DMA to the lowest
(Level 1 or Level 2) possible memory level based on the data
access granularity

DMA is used for all data management across memory levels,
saving essential core cycles in managing data

Multiple Data buffers are used to avoid core and DMA
contention

Semaphores are used for inter-core communication

Line processing framework

No L2 or L3 accesses made, thereby saving external memory
bandwidth and DMA resources
Only DMA channels used to manage data
Applicable examples - color conversion, histogram
equalization, filtering, sampling etc.

Video In

Rx_Line0
Rx_Line2

Tx_Line0
Tx_Line2

Core A
Internal L1 memory

Rx_Line1
Rx_Line3

Tx_Line1
Tx_Line3

Core B
Internal L1 memory

Video Out

Macro-block processing framework

No L3 accesses
Applicable examples - edge detection, JPEG/MJPEG
encoding/decoding algorithms, convolution encoding etc

Video In

Rx0
Rx1

Core A
Internal L1 memory

Core B
Internal L1 memory

PPI1

Tx0
Tx1

Rx0
Rx1

Tx0
Tx1

L2 Rx Buffers L2 Tx Buffers

Presenter
Presentation Notes
Remove PPI

Frame processing framework

Applicable example - motion detection

Rx0
Rx1

Core A
Internal L1 memory

Core B
Internal L1 memory

Tx0
Tx1

Rx0
Rx1
Tx0
Tx1

Rx0
Rx1

Rx0
Rx1

L3 Frame Buffers

Presenter
Presentation Notes
External memory buffers

GOP processing framework

Applicable examples - encoding/decoding algorithms such as
MPEG-2/MPEG-4

Rx0
Rx1

Core A
Internal L1 memory

Tx0
Tx1

Rx0
Rx1

Rx0
Rx1 Rx0

Rx1

Core B
Internal L1 memory

Tx0
Tx1

Rx0
Rx1

Rx0
Rx1

L3 Frame Buffers

GOP = 4

Presenter
Presentation Notes
L3- external memory

Results

Template Core
cycles/pi
xel*(appr
ox.)
single
core

Core
cycles/pixe
l*(approx.)
- two cores

L1 data
memory
required(
bytes)

L2 data
memory
required
(bytes)

Comments

Line
Processing

42 80 (line size)*2;
for ITU-656
- 1716*2

double
buffering in
L1

Macro-
block

Processing

36 72 (Macro-block
size(nxm))*
2

Slice of a
frame;
(macro-
block height
*line size)*4

double
buffering in
L1 and L2

Frame
processing

35 70 (size of sub-
processing
block)*(num
ber of
dependent
blocks)

(size of sub-
processing
block)*(num
ber of
dependent
blocks)

Only L1 or L2
cannot be
used
double
buffering in
L1 or L2

Using the Templates

Identify the following items for an application

The granularity of the sub-processing block in the image
processing algorithm

The available L1 and L2 data memory, as required by the
specific templates.

The estimate of the computation cycles required per sub-
processing block

The spatial and temporal dependencies between the sub-
processing blocks. If dependencies exist, then the templates
needs modification to account for data dependencies

Conclusion

Understanding the data access pattern of an application is
key to efficient programming model for embedded systems

The frameworks combine techniques to efficiently manage the
shared resources and exploit the known data access pattern in
multimedia applications to achieve a 2X speed-up

The memory footprint is equal to the smallest data access
granularity of the application

The frameworks can be combined to integrate multiple
algorithms with different data access pattern within an
application

	Multi-core programming frameworks for embedded systems
	Outline
	Multi-core Programming Challenge
	Framework requirements
	Framework methodology
	Multimedia Data-flow Analysis
	ADSP-BF561 Dual-core Architecture Analysis
	Framework models
	Framework design
	Line processing framework
	Macro-block processing framework
	Frame processing framework
	GOP processing framework
	Results
	Using the Templates
	Conclusion

