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Introduction 
The growing processing demands placed by embedded 
multimedia applications are getting increasingly difficult to 
meet with single-core architectures. In an effort to increase 
the performance for single core architectures, the power 
dissipation is reaching unsustainable levels as we try to 
pack more and more transistors on a single chip and 
increase the clock speed further. To overcome this barrier, 
multi-core embedded architectures have shown the promise 
to balance the high performance and low power 
requirements for embedded applications. But there hasn’t 
been much evidence of success in utilizing them efficiently 
because of the limited availability of parallel software, 
compiler technology and development tools for multi-core 
architectures. This is forcing application developers to 
convert sequential programs to parallel software by hand in 
addition to the fact that it is harder to evaluate a parallel 
application due to the lack of developmental tools. This 
makes developing parallel applications extremely difficult 
and time consuming thereby increasing the time to market 
multi-core embedded systems.  
 
Considering the above, frameworks can provide a better 
starting point for developing multi-core applications and 
thus help to reduce the time of development. In this paper, 
we demonstrate frameworks for embedded multimedia 
applications although the data flow models applied within 
the frameworks can be extended to many other applications. 
The frameworks described incorporate the inherent data 
parallelism in multimedia applications and also demonstrate 
effective management of streaming data by efficiently 
utilizing the underlying architecture. 
 
The frameworks exploit the natural data parallelism 
exhibited by multimedia applications. Levels of data 
parallelism exist in multimedia applications. The 
granularity of parallelism varies greatly from a set of 
frames to a macro-block of a frame. Lower the granularity, 
higher the synchronization required between the sharing 
elements (cores, DMA channels etc.) although lower 
granularities give increased parallelism and reduced 
network traffic.  
 
Developing scalable parallel software also greatly depends 
on the efficient use of the interconnect network, memory 
hierarchy, and the peripheral/DMA resources. All the above 
elements are constrained by the strict low power and low 
cost requirements of a system. Thereby innovative ways are 
needed to efficiently utilize these resources when 

programming in a multi-core environment. We present 
some novel ideas on managing these resources efficiently 
on the Blackfin 561 dual-core platform. 
 
To summarize, our framework focuses on the following key 
aspects of multi-core programming: 
1. Parallelizing programs:  

 Understanding inherent parallelism within 
applications and its data flow analysis. 

2. Managing shared resources:   
 Managing shared resources such as memory and 

peripheral/DMA channels 
3. Synchronization:   

 Managing shared code and data memory,  
 Managing multiple heaps and stacks 

 
The following few sections describe the ADSP-BF561 
dual-core architecture and the frameworks. 

ADSP-BF561 architecture 
We briefly describe the ADSP-BF561 architecture. It 
consists of separate code and data memory, private to the 
two cores and a shared L2 and external memory. All 
peripherals and DMA resources can be interfaced to either 
core with configurable arbitration schemes. There are two 
DMA controllers; each of which consists of 2 Memory 
DMA channels. Internal memory DMA channel is also 
available to transfer data between L1 and L2 memory at a 
much faster rate. The bus connecting the L2 memory and 
the two cores is shared. Another bus connects the external 
memory and the two cores but is also shared. There are no 
crossbars or switches on any interconnect bus. 
 
Frameworks 
To achieve data parallelism, the goal is to find a block of 
data or a set of blocks of data in the stream data that can be 
treated independently for feeding to a processing element. 
Finding independent blocks of data reduces synchronization 
overhead and makes parallelizing algorithms easier. To find 
these independent blocks of data it is important to 
understand the data flow model or the data access pattern 
of an application.  
 
For most multimedia applications, the data access pattern 
can be viewed as a 2-d pattern (spatial domain) where the 
independent blocks of data are confined to a single frame 
and 3-d pattern (temporal domain) where the independent 
blocks of data span more than one frame. In the spatial 



 

domain, the frame can be divided into slices (n sequentially 
rows) and macro-blocks of a video frame. In the temporal 
domain, the data flow can be sub-divided at a frame level or 
the group of picture (GOP) level. 
 
Based on the granularity of the data access pattern we 
define 4 different frameworks. 

1. Line processing (or slice with n=1) 
2. Macro-block processing 
3. Frame processing 
4. GOP processing 

If the data access pattern of an application can be 
determined to be one of the above four, then the  

Table 1: Specifications for the frameworks 

corresponding framework can be easily used. There are also 
ways to integrate multiple frameworks for asymmetrical 
parallel processing (e.g. when you have two or more 
processing algorithms for a data stream). We show one 
example of how to modify the frameworks for such 
applications. We also show ways to modify the frameworks 
if dependencies extend beyond the 4 levels described (e.g. 
dependency between multiple macro-blocks in a motion 
window search etc.). 
 
We will discuss the data flow models for each of the 
framework. For example the line processing framework can 
be described as follows 

Line processing 
In case of line processing dependency exists only at a line 
level i.e. between adjacent pixels. Every line forms a data 
block which can be independently processed by each core. 
Figure 1 shows the data flow model for the line processing 
framework. The video input is handled by core A and video 
out is managed by core B. Separate sets of MDMA 
channels are used for managing data between core A and 
core B. Multiple buffers are used in L1 memory to avoid 
contention between core and peripheral-DMA access. 
Synchronization between the two cores is required every 
line which is achieved with a counting semaphore.  
Examples of applications that can utilize this framework 
include color conversion, histogram equalization, filtering, 
sampling etc. 

PPI0
Rx_Line0
Rx_Line2

Tx_Line0
Tx_Line2

Core A 
Internal L1 memory

Rx_Line1
Rx_Line3

Tx_Line1
Tx_Line3

Core B 
Internal L1 memory

PPI1

PPI0
Rx_Line0
Rx_Line2

Tx_Line0
Tx_Line2

Core A 
Internal L1 memory

Rx_Line1
Rx_Line3

Tx_Line1
Tx_Line3

Core B 
Internal L1 memory

PPI1

 
Figure 1: Data flow mode for the line processing framework 

Framework analysis 
Benchmarking 
To evaluate the dual-core frameworks, we first develop a 
single core application with the data flow model and then 
compare it to the dual-core implementation. The single core 
models are discussed in [1] in more details. We compare 
the speed up of only the basic frameworks and not the 
combination of frameworks as described before. 
The cycles shown are the core computation cycles available 
for processing the stream data to meet real time constrains 
for an NTSC video input. For a core running at 600MHz the 
total cycles available per pixel to meet the real time 
constrains is 44 cycles/pixel. Any core access to the stream 
data is only a single core cycle as all data access is to L1 
memory. The cycles shown also exclude any interrupt 
latency. One can thus assume an infinite L1 memory for 
any core accesses to the stream data, when using the 
frameworks. 
 
As can be seen in Table 1, the dual-core frameworks 
effectively give a 2x speed-up on all the frameworks. The 
table also shows the L1 memory usage for each core and 
the shared memory space required for each of the 
framework. The frameworks use the ADI provided Device 
Driver/System Services Library (DD/SSL) for peripheral 
and data management. 
 
Conclusion 
We have shown that by understanding the data access 
pattern of a particular application and effectively utilizing 
the memory and system resources of the underlying 
architecture a scalable parallel application can be 
developed. 
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Template Core 
cycles/pi
xel(appr
ox.) 
single 
core 

Core 
cycles/pi
xel 
(approx.
) 2 cores 

L1 data 
memory 
required 

L2 data 
memory 
required  

Line 
processing 

42 82 (line size)*2; 
for ITU-656 
1716*2  

 

Macro-block 
processing 

36 72 (Macro-block 
size(nxm))*2 

(macro-
block 
height 
*line 
size)*4 

Frame 
processing 

35 69 (size of sub-
processing 
block)*(numbe
r of dependent 
blocks) 

(size of 
sub-
processing 
block)*(nu
mber of 
dependent 
blocks) 


