

Multi-core programming frameworks for embedded multimedia
applications

Kaushal Sanghai and Rick Gentile
Analog Devices Inc.

Norwood, MA
{kaushal.sanghai, richard.gentile}@analog.com

Introduction
The growing processing demands placed by embedded
multimedia applications are getting increasingly difficult to
meet with single-core architectures. In an effort to increase
the performance for single core architectures, the power
dissipation is reaching unsustainable levels as we try to
pack more and more transistors on a single chip and
increase the clock speed further. To overcome this barrier,
multi-core embedded architectures have shown the promise
to balance the high performance and low power
requirements for embedded applications. But there hasn’t
been much evidence of success in utilizing them efficiently
because of the limited availability of parallel software,
compiler technology and development tools for multi-core
architectures. This is forcing application developers to
convert sequential programs to parallel software by hand in
addition to the fact that it is harder to evaluate a parallel
application due to the lack of developmental tools. This
makes developing parallel applications extremely difficult
and time consuming thereby increasing the time to market
multi-core embedded systems.

Considering the above, frameworks can provide a better
starting point for developing multi-core applications and
thus help to reduce the time of development. In this paper,
we demonstrate frameworks for embedded multimedia
applications although the data flow models applied within
the frameworks can be extended to many other applications.
The frameworks described incorporate the inherent data
parallelism in multimedia applications and also demonstrate
effective management of streaming data by efficiently
utilizing the underlying architecture.

The frameworks exploit the natural data parallelism
exhibited by multimedia applications. Levels of data
parallelism exist in multimedia applications. The
granularity of parallelism varies greatly from a set of
frames to a macro-block of a frame. Lower the granularity,
higher the synchronization required between the sharing
elements (cores, DMA channels etc.) although lower
granularities give increased parallelism and reduced
network traffic.

Developing scalable parallel software also greatly depends
on the efficient use of the interconnect network, memory
hierarchy, and the peripheral/DMA resources. All the above
elements are constrained by the strict low power and low
cost requirements of a system. Thereby innovative ways are
needed to efficiently utilize these resources when

programming in a multi-core environment. We present
some novel ideas on managing these resources efficiently
on the Blackfin 561 dual-core platform.

To summarize, our framework focuses on the following key
aspects of multi-core programming:
1. Parallelizing programs:

 Understanding inherent parallelism within
applications and its data flow analysis.

2. Managing shared resources:
 Managing shared resources such as memory and

peripheral/DMA channels
3. Synchronization:

 Managing shared code and data memory,
 Managing multiple heaps and stacks

The following few sections describe the ADSP-BF561
dual-core architecture and the frameworks.

ADSP-BF561 architecture
We briefly describe the ADSP-BF561 architecture. It
consists of separate code and data memory, private to the
two cores and a shared L2 and external memory. All
peripherals and DMA resources can be interfaced to either
core with configurable arbitration schemes. There are two
DMA controllers; each of which consists of 2 Memory
DMA channels. Internal memory DMA channel is also
available to transfer data between L1 and L2 memory at a
much faster rate. The bus connecting the L2 memory and
the two cores is shared. Another bus connects the external
memory and the two cores but is also shared. There are no
crossbars or switches on any interconnect bus.

Frameworks
To achieve data parallelism, the goal is to find a block of
data or a set of blocks of data in the stream data that can be
treated independently for feeding to a processing element.
Finding independent blocks of data reduces synchronization
overhead and makes parallelizing algorithms easier. To find
these independent blocks of data it is important to
understand the data flow model or the data access pattern
of an application.

For most multimedia applications, the data access pattern
can be viewed as a 2-d pattern (spatial domain) where the
independent blocks of data are confined to a single frame
and 3-d pattern (temporal domain) where the independent
blocks of data span more than one frame. In the spatial

domain, the frame can be divided into slices (n sequentially
rows) and macro-blocks of a video frame. In the temporal
domain, the data flow can be sub-divided at a frame level or
the group of picture (GOP) level.

Based on the granularity of the data access pattern we
define 4 different frameworks.

1. Line processing (or slice with n=1)
2. Macro-block processing
3. Frame processing
4. GOP processing

If the data access pattern of an application can be
determined to be one of the above four, then the

Table 1: Specifications for the frameworks

corresponding framework can be easily used. There are also
ways to integrate multiple frameworks for asymmetrical
parallel processing (e.g. when you have two or more
processing algorithms for a data stream). We show one
example of how to modify the frameworks for such
applications. We also show ways to modify the frameworks
if dependencies extend beyond the 4 levels described (e.g.
dependency between multiple macro-blocks in a motion
window search etc.).

We will discuss the data flow models for each of the
framework. For example the line processing framework can
be described as follows

Line processing
In case of line processing dependency exists only at a line
level i.e. between adjacent pixels. Every line forms a data
block which can be independently processed by each core.
Figure 1 shows the data flow model for the line processing
framework. The video input is handled by core A and video
out is managed by core B. Separate sets of MDMA
channels are used for managing data between core A and
core B. Multiple buffers are used in L1 memory to avoid
contention between core and peripheral-DMA access.
Synchronization between the two cores is required every
line which is achieved with a counting semaphore.
Examples of applications that can utilize this framework
include color conversion, histogram equalization, filtering,
sampling etc.

PPI0
Rx_Line0
Rx_Line2

Tx_Line0
Tx_Line2

Core A
Internal L1 memory

Rx_Line1
Rx_Line3

Tx_Line1
Tx_Line3

Core B
Internal L1 memory

PPI1

PPI0
Rx_Line0
Rx_Line2

Tx_Line0
Tx_Line2

Core A
Internal L1 memory

Rx_Line1
Rx_Line3

Tx_Line1
Tx_Line3

Core B
Internal L1 memory

PPI1

Figure 1: Data flow mode for the line processing framework

Framework analysis
Benchmarking
To evaluate the dual-core frameworks, we first develop a
single core application with the data flow model and then
compare it to the dual-core implementation. The single core
models are discussed in [1] in more details. We compare
the speed up of only the basic frameworks and not the
combination of frameworks as described before.
The cycles shown are the core computation cycles available
for processing the stream data to meet real time constrains
for an NTSC video input. For a core running at 600MHz the
total cycles available per pixel to meet the real time
constrains is 44 cycles/pixel. Any core access to the stream
data is only a single core cycle as all data access is to L1
memory. The cycles shown also exclude any interrupt
latency. One can thus assume an infinite L1 memory for
any core accesses to the stream data, when using the
frameworks.

As can be seen in Table 1, the dual-core frameworks
effectively give a 2x speed-up on all the frameworks. The
table also shows the L1 memory usage for each core and
the shared memory space required for each of the
framework. The frameworks use the ADI provided Device
Driver/System Services Library (DD/SSL) for peripheral
and data management.

Conclusion
We have shown that by understanding the data access
pattern of a particular application and effectively utilizing
the memory and system resources of the underlying
architecture a scalable parallel application can be
developed.

References
[1] Kaushal Sanghai, “Video Templates for developing

multimedia applications on Blackfin processors,” Application
note, Analog Devices Inc, Sept. 2006.

[2] ADSP-BF561 Blackfin Processor Hardware Reference. Rev
3.1, May 2005. Analog Devices, Inc.

[3] David Katz and Rick Gentile. Embedded Media Processing.
Newnes Publishers, Burlington, MA, USA, 2005.

[4] Device Drivers and System Services Manual for
Blackfin Processors. Rev 2.0, March 2006. Analog
Devices, Inc.

Template Core
cycles/pi
xel(appr
ox.)
single
core

Core
cycles/pi
xel
(approx.
) 2 cores

L1 data
memory
required

L2 data
memory
required

Line
processing

42 82 (line size)*2;
for ITU-656
1716*2

Macro-block
processing

36 72 (Macro-block
size(nxm))*2

(macro-
block
height
*line
size)*4

Frame
processing

35 69 (size of sub-
processing
block)*(numbe
r of dependent
blocks)

(size of
sub-
processing
block)*(nu
mber of
dependent
blocks)

