
The Development and Performance Analysis of a Distributed
Corner Turn in Multicore Embedded Systems using the AXIS

Graphical Software System
Tom Litrenta, Application Engineer

Radstone Embedded Systems, Part of GE Fanuc Embedded Systems
tom.litrenta@radstone.com

Modern Radar System Requirements

Modern day radar systems need to perform sophisticated
computationally intensive algorithms and these systems must
be designed with space constraints[1].. Even single channel
radar systems require many processors to keep up with
today’s demanding real time I/O requirements. Thus
multicore processors are an extremely attractive alternative to
this marketplace.

Processing Radar Data with Multiple
Processors or Processor Cores

Typically radar data is digitized, and placed in a single
processor. Next the data is scattered to a collection of
distributed processors. Each of the processors performs one
or more FFT’s on each row of data. This row data is referred
to as the fast time dimension. This range compression step
can be performed optimally as each row of range data is
contiguous in memory.

Then it is desired to perform FFT’s on each column of data.
This column data is often referred to as the slow time
dimension. However each column of data is now distributed
across many processors and is therefore NOT contiguous in
memory. Any FFT on noncontiguous data is woefully slow!

Therefore data is redistributed so that each column of data is
placed as a row of data on a single processor. This data is
now contiguous in memory and can be processed optimally.
This redistribution of data has been historically referred to as
a corner turn. In many systems the corner turn operation is the
most time consuming operation and may be the limiting
factor for scalability.

The Distributed Corner Turn Algorithm and
Performance

Since the distributed corner turn can often become the most
time consuming segment of a radar application, it is
imperative to implement it with a highly efficient algorithm..
Two considerations must be especially kept in mind:

• Processor utilization

• Memory and cache usage

We have implemented an algorithm which is efficient in both
regards. For the two dimensional data matrix, diagonal tiles
are transposed in place to assure optimal memory usage. Non-
diagonal tiles are transposed and swapped across processors
as shown in figures 1 and 2.

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)
(4,1) (4,2) (4,3) (4,4)

Figure 1 – Two Dimensional Matrix BEFORE corner
turn and viewed as tiled for a 4 processor system

T(1,1) T (2,1) T (3,1) T (4,1)
T (1,2) T (2,2) T (3,2) T (4,2)
T (1,3) T (2,3) T (3,3) T (4,3)
T (1,4) T (2,4) T (3,4) T (4,4)

Figure 2 – Two Dimensional Matrix AFTER corner turn and
viewed as tiled for a 4 processor system

Note that T is the transpose operator so T(2,1) in figure 2
is the transpose of input tile (2,1) in figure 1.

A summary of the results is shown below for 4kx4k
complex input data.

Execution TIme in MS

0

200

400

600

800

1000

1200

1400

1 4 8 16 24

Number of Nodes

Figure 3– Performance Improvement of Corner Turn as the
Number of Processors Increases for a PowerPC 7447 System

The role of the AXIS graphical software system will be
examined in the development of this distributed corner turn.

The AXIS Graphical Software System

AXIS is an unique integrated graphical toolset for
multiprocessor software development and performance
analysis.[2] AXIS is ideally suited to multicore processors as
they must be treated as a multiprocessor system for
application development purposes.. Some of the components
of AXIS are described below.

HardwareView is used to identify various heterogeneous
system components and I/O connections and to make sure
that the components needed to perform the corner turn are
properly connected.

Figure 4 – HardwareView showing system connections

ApplicationView is a graphical tool, for building
multiprocessor applications. I/O channels between tasks are
graphically defined. The file generated by ApplicationView is
used by AXISFlow, which is similar to MPI, and performs
the data distribution for the corner turn

Figure 5– ApplicationView sets up tasks and channels

The FFT’s needed in this radar application are highly
optimized and are part of AXISLib.

RuntimeView provided corner turn real time performance
analysis such as CPU usage and I/O performance. This
information is available on a task by task basis.

Figure 6 – RuntimeView shows individual tasks and
channel data performance

EventView allows instrumentation of code for performance
analysis of the corner turn Relative timing information
among all tasks is available to the user for further analysis.

Figure 7 – EventView illustrates timing of events among tasks
and channels

References

[1] J. Meyer, Multi-function radar for the deployed warrior
using VPX-REDI and RapidIO , Military Embedded Systems,
Fall, 2006
[2] D. Tetley, The role of software tools in developing and
deploying multiprocessor systems, VMEbus Systems, Volume
24, Number 2, April 2006

