
R-Verify: Deep Checking of Embedded Code

James Ezick†

Donald Nguyen†

Richard Lethin†

Rick Pancoast*

(†) Reservoir Labs
(*) Lockheed Martin

The Eleventh Annual Workshop on
High Performance Embedded Computing

September 2007



HPEC 2007 2

R-Verify Design

Usable
• Simplifies software development process

– Find bugs earlier (debugging)
– Static identification of bug patterns 

(regression testing)
– Verify entire application with 

components (integration testing)
• Integrates with existing workflows
• Visual counter-example presentation
• Extensible to any domain
• Verification expertise not required

– No new language to learn
– Properties written in source language

Powerful
• SAT based model checking technology

– Modeling and deep semantic 
checking of complex systems

– Aggressively optimized search
• Works with any programming style

Scalable
• Uses reasonable time and space
• Applies abstraction and refinement

Counter-
example 

Static Verification 

 

Developer IDE 

R-Stream 
High-level 
Compiler 

Salt Constraint 
Language 
Translator 

Alef Boolean 
Satisfiability 

Solver 

Runtime 
Checking 

 

Checked 
System 

 

Verified System 

 

C Program text 
with Assertions 

Program and 
Specification 

R-Verify Supports:

• Pre- and post-condition checking including 
documented VSIPL rules

• Memory safety of embedded device drivers, 
interrupt handlers, and VSIPL “admitted” blocks

• Numerical precision of arithmetic pipelines with an 
emphasis on VSIPL pipeline implementations



HPEC 2007 3

R-Verify Deep Checking Cycle

Execution Trace

R-Stream IR

Constraint Encoding

Salt

Alef Input

Alef Solution

Developer IDE

Program Error

Development/Verification Cycle



HPEC 2007 4

Built on Existing Reservoir Labs Technologies

• R-Stream 3.0
– Can plug into existing development 

environments such as Eclipse
– Industry-standard C front end
– Parses source code and generates 

intermediate representation (IR)
– Robust toolkit of compiler algorithms

• Infer known loop bounds
• Unroll loops and inline entire 

function calls
– Supports classical optimizations

• Constraint propagation
• Dead code elimination
• Partial subexpression elimination
• Many more

– Integrated IR visualization and 
reflection tools to aid reporting

– Rich library of useful analyses and 
representations

• Points-to analysis
• Reachability analysis
• Program dependency graphs
• Augmented post-dominator tree

• Salt 1.5
– Constraint intermediate language

• Easy to target
– Optimizes constraint representations
– Supports logical, pseudo-Boolean, fixed 

point arithmetic and set constraints
– Extensible to other constraint logics

• Alef SAT Solver
– Parallel satisfiability solver
– Targets large problem sizes
– Improved performance by exploiting 

data and cooperative search parallelism

By basing R-Verify on mature, robust 
technologies we were able to:

• Manage Risk
• Reduce development time, cost
• Focus on applications and usability rather 

than technology �


	R-Verify: Deep Checking of Embedded Code
	R-Verify Design
	R-Verify Deep Checking Cycle
	Built on Existing Reservoir Labs Technologies

