R-Verify™: Deep Checking of Embedded Code

S

e

Reservoir Labs, Inc.

?A\s/e%o/i\r vabs®
(Vanv,

R-Verify Design

Deep Bit-Level Checking

SAT-Based Static Assertion Checking

C Program text

with Assertions

Counter-
example

Program and
Specification

Developer IDE

Static Verification

R-Stream
High-level
Compiler

Alef Boolean
Satisfiability
Solver

Salt Constraint
Language
Translator

\ 4

Runtime
Checking

Checked
System

Verified System

R-Verify is built on three core Reservoir Labs technologies:

*R-Stream™ — a high-level compiler which contains a state-of-the-art framework
that permits a wide-range of program analyses

*Salt™ — a constraint translator which efficiently generates optimized constraint
systems from high-level program descriptions

*Alef™ — a multiprocessor Boolean satisfiability (SAT) solver which contains
novel algorithms that allow it to take advantage of HPC hardware

Development & Verification Cycle

g ':_-‘-9 ol

—_—

3. Constraint Encoding

2. R-Stream

1. Developer IDE 4, Salt

I Development/Verification Cycle l

= | e

8. Program Error

- - o

7. Execution Trace 8. Alef Solution

R-Verify plugs-in to existing IDEs such as Eclipse via an 8-step cycle:

1.
2.

w

Normal IDE Source Development 5. Alef searches for an execution that

R-Stream compiler builds an violates the specification

internal representation of the code 6. Violation is returned to R-Stream

. IR and specification are translated 7. Violation is reflected as an error

to Salt constraints path in the R-Stream IR

. Salt tool translates the combined 8. Error path in the R-Stream IR is

constraints to annotated CNF reflected back to the IDE

B. R-Verify reporting an
assertion failed

WOEEINED{46]
BT

Program Text

Constraint
Representation

How does it work?
1. Model the program (P) and the verification conditions (Q) using constraints
2. Use Alef SAT solver to look for a solution to: P A =Q

3. Decode an Alef solution into a counter-example

HoMoM oK

It

oo

C. R-Stream representation of
counterexample

D. R-Verify verifying correctness
of program after fix

A. Example program demonstrating integer
overflow bug

Application to VSIPL

“R-Verify can quickly and efficiently find deep
software errors that are invisible to superficial
abstraction-based analysis. These types of errors are
common in low-level embedded code and can easily
go undetected during the normal software testing
process. These undiscovered errors can be fatal in
deployed software.”

The Satisfiability Problem

Definition: Given a Boolean formula F, decide if there is an
assignment to the variables in F such that F evaluates to true.

Example: F = (=X, VvV —=X,) A (X, V X, V=X5) A (X V X3)
Solution: F evaluates to true (is satisfied) if X =0, %=1, X3=1.

vsip_sexp10_p Vector/Matrix Exponential Base 10
Computes the base 10 exporential for each alement of a vector/matrix.
Functionality

r, =—10° forj=0.1, .. N1
n, = 10% fori=0, 1, .. M1 fory=0,1, .. N1
Prototypes

woid waip_wexplO_£(

woid waip mexplO_£7]

Arguments
Ya WView of input vector/uatiix
‘= Viaw of cutput vecter matmix
Return Value
None.
Restrictions
Crverflow will cecur if an element 15
mumber. The result of an overflow is mplementation dependent.
Undearflow will ccour if an elemsant is less than the negative of the bass ten log of the
maxinnm dafimed number. The result of an underflow 15 implementation dependent.
Errors
The arguaments nmst conformn to the following
. Input and output views must all be the same size.
. All view objects must bevalid.
. The imput and cutput views mst be identical views of the same bleck (in-place), or must
nat overlap.

sr=ater than the base ten log of the maxmum defined

1
2
3

We are currently applying R-Verify to:

*Pre- and post-condition checking including all of the above VSIPL rules

*Memory safety of embedded device drivers, interrupt handlers, and VSIPL
“admitted” blocks

*Numerical precision of arithmetic pipelines with an emphasis on VSIPL
pipeline implementations




	Slide Number 1

