
SAT-Based Static Assertion Checking

Application to VSIPL

The Satisfiability Problem

Deep Bit-Level CheckingR-Verify Design

R-Verify™: Deep Checking of Embedded Code 
Reservoir Labs, Inc.

Definition: Given a Boolean formula    , decide if there is an 
assignment to the variables in     such that     evaluates to true.

Example: 

Solution:     evaluates to true (is satisfied) if = 0, = 1,     = 1. 

)()()( 3132121 xxxxxxxF ∨∧¬∨∨∧¬∨¬=

1x 2x 3x

F
FF

F

Development & Verification Cycle

Counter-
example 

Static Verification 

 

Developer IDE 

R-Stream 
High-level 
Compiler 

Salt Constraint 
Language 
Translator 

Alef Boolean 
Satisfiability 

Solver 

Runtime 
Checking 

 

Checked 
System 

 

Verified System 

 

C Program text 
with Assertions 

Program and 
Specification 

R-Verify is built on three core Reservoir Labs technologies:

•R-Stream™ – a high-level compiler which contains a state-of-the-art framework 
that permits a wide-range of program analyses

•Salt™ – a constraint translator which efficiently generates optimized constraint 
systems from high-level program descriptions

•Alef™ – a multiprocessor Boolean satisfiability (SAT) solver which contains 
novel algorithms that allow it to take advantage of HPC hardware

R-Verify plugs-in to existing IDEs such as Eclipse via an 8-step cycle:

1. Normal IDE Source Development

2. R-Stream compiler builds an 
internal representation of the code

3. IR and specification are translated 
to Salt constraints

4. Salt tool translates the combined 
constraints to annotated CNF

5. Alef searches for an execution that 
violates the specification

6. Violation is returned to R-Stream

7. Violation is reflected as an error 
path in the R-Stream IR

8. Error path in the R-Stream IR is 
reflected back to the IDE

“R-Verify can quickly and efficiently find deep 
software errors that are invisible to superficial 
abstraction-based analysis. These types of errors are 
common in low-level embedded code and can easily 
go undetected during the normal software testing 
process. These undiscovered errors can be fatal in 
deployed software.”

How does it work?

1. Model the program (P) and the verification conditions (Q) using constraints

2. Use Alef SAT solver to look for a solution to: P ^ ¬Q

3. Decode an Alef solution into a counter-example

We are currently applying R-Verify to:

•Pre- and post-condition checking including all of the above VSIPL rules

•Memory safety of embedded device drivers, interrupt handlers, and VSIPL 
“admitted” blocks

•Numerical precision of arithmetic pipelines with an emphasis on VSIPL 
pipeline implementations


	Slide Number 1

