

R-Verify™: Deep Checking of Embedded Code
James R. Ezick, Donald D. Nguyen, Richard A. Lethin, Rick Pancoast

{ezick, nguyen, lethin}@reservoir.com, rick.pancoast@lmco.com
Reservoir Labs, Inc. Lockheed Martin

Introduction1

Software is complex and software errors are an increasing
source of cost and delay in DoD system development. Static
verification is an attractive approach for mitigating these
factors, since it can verify precise correctness properties at
development time. However, existing tools suffer from a
combination of insufficient scalability, lack of smooth
integration into the development process, restriction to
superficial checking, and prohibitive complexity of use.
With R-Verify, we have addressed these issues by
designing a system that tightly integrates with a compiler,
checks native source-level assertions, and uses a program
abstraction geared for a more powerful and efficient SAT-
based constraint solver.

R-Verify can verify deep, bit-level properties of C
programs making it ideal for verification of embedded
code, including VSIPL [1] arithmetic code. It takes
advantage of assertion-based testing methodologies by
using program assertions as the program specification. That
is, assertion statements in the program are used directly by
the verification system as descriptions of correct program
behavior. Because our tool functions over properties
expressed in the source language of the program, it is not
necessary to learn any specialized formalism. We consider
this to be one of R-Verify’s key competitive advantages.

R-Verify Development & Verification Cycle

R-Verify is built on three core Reservoir technologies [2]:

• R-Stream™, a high-level compiler, which
contains a state-of-the-art framework that permits
a wide-range of program analyses

• Salt™, a constraint translator, which efficiently
generates optimized constraint systems from high-
level program constraint descriptions

• Alef™, a multi-processor Boolean satisfiability
(SAT) solver, which contains novel algorithms
that allow it to take advantage of HPC hardware

The R-Stream compiler parses the input C program using
an industry-standard C parser and performs multiple
transformation passes to simplify the program structure.
R-Verify uses the simplified program representation to
generate a system of Salt language constraints that model
the execution of the program. It then uses the Salt constraint
translator and the Alef satisfiability solver to solve this
constraint system and consequently verify the program.
R-Verify is currently exposed to developers through a plug-

This work was produced under the OSD Software Producibility Initiative,
managed by ARL, under Phase I SBIR contract W911QX-06-C-0099 and
DARPA ACIP project under Phase II SBIR contact W31P4Q-04-C-R257.

in to the Eclipse IDE [3]. Figure 1 illustrates the R-Verify
development and verification cycle.

Figure 1: R-Verify development and verification process

Deep Bit-Level Checking

Figure 2 illustrates how a developer can use the static
assertion checking capability of R-Verify to isolate deep
errors in an embedded application. The example program
uses two optimized, bit-twiddling functions copied from a
popular compendium of C routines to calculate (1) the next
largest power of two (clp2) and (2) the population count
or the number of non-zero bits in the binary representation
of an integer (pop1). Using these two functions, the
example program asserts that all powers of two calculated
by clp2 contain exactly one non-zero bit (see Figure 2A).

Unfortunately, the program as written contains an error
derived from the fixed bit-width of computer integers.
When the input argument to clp2 becomes large enough,
the arithmetic inside the function overflows and returns
zero instead of the correct result (i.e., 231). R-Verify
correctly identifies this error when verifying the program
(see Figure 2B). The counterexample gives an instance
where the assertion fails (see Figure 2C)—when the
uninitialized integer x has the value 2,147,483,647 (i.e.,
231-1). In this case, the fix for the error is to realize that the
assertion does not hold for integers greater than a certain
value due to the limitations of finite precision arithmetic.
When the assertion is constrained to values between 0 and
231-1 (exclusive), then R-Verify correctly reports that the
assertion holds for all executions (see Figure 2D).

If R-Verify identifies an error in a program, it shows a
visual execution trace describing a counterexample.
R-Verify can quickly and efficiently find deep software
errors that are invisible to superficial abstraction-based
analysis. These types of errors are common in low-level
embedded code and can easily go undetected during the
normal software testing process. These undiscovered errors
can be fatal in deployed software.

Figure 2: Example usage of R-Verify deep checking

SAT-Based Static Assertion Checking

R-Verify performs static assertion checking by constructing
a single satisfiability problem that models the program
semantics, and uses the Alef parallel SAT solver to
determine if there is any execution that violates the program
assertions. The satisfiability problem is constructed from
two parts: the set of constraints that model the semantics of
the input program P and the set of constraints that express
the verification condition or assertions, Q. The verification
problem is then to find solutions to the formula: P ∧ ¬Q.
That is, executions consistent with the semantics of the
input program, but not with its assertions. Counterexamples
to the assertions can be extracted from solutions to the
verification problem. If there is no solution, then there is no
execution that violates any of the program assertions. In this
case, the program is correct with respect to the assertions.

The constraints generated are mostly straightforward
translations of program operations into logical operations
on bits. For example, the constraints that represent the
addition of two numbers are similar to the Boolean circuit
representation of a ripple-carry or carry look-ahead adder.
Thus, Boolean satisfiability constraints are the natural
representation for bit-precise operator models and fast SAT
algorithms make deep analysis in R-Verify tractable.

Figure 3 presents a sample page from the VSIPL API
specification that illustrates common types of both
arithmetic and API call sequence restrictions. R-Verify, in
conjunction with the static analysis capability already in
R-Stream, can check each of these conditions.

Figure 3: Sample page from VSIPL specification

R-Verify renders constraint systems in the Salt constraint
language for translation to the form required by Alef. The
Salt translator accepts logical, set-theoretic, and arithmetic
constraints in the Salt language. Salt arithmetic operators
support both signed and unsigned arbitrary precision fixed-
point operands and provide built-in support for arithmetic
overflow constraints. Both truncation and rounding modes
are supported. The Salt translator exploits the constraint
semantics to perform optimizations that typically improve
the search efficiency of the Alef SAT solver by 50-80%.

The Alef solver is a high-performance solver developed for
HPC hardware. Alef supports parallelism both in the
creation of multiple search threads and in the distribution of
the computationally intense process of Boolean constraint
propagation (BCP) [4]. When a violation is found, the Alef
solver returns an assignment that is then trivially decoded
into an execution trace using a map generated by Salt.

Conclusion

R-Verify is an integrated checking tool for embedded code
designed to provide a deep analysis capability while still
being easy to use. We are currently applying R-Verify to:

• Pre- and post-condition checking

• Memory safety of embedded device drivers,
interrupt handlers, and VSIPL “admitted” blocks

• Numerical precision of arithmetic pipelines, with
an emphasis on VSIPL pipeline implementations

References
[1] http://www.vsipl.org/.

[2] http://www.reservoir.com.

[3] http://www.eclipse.org.

[4] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an Efficient SAT Solver,”
DAC’01, Las Vegas, NV, June 2001.

