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Introduction1 

Software is complex and software errors are an increasing 
source of cost and delay in DoD system development. Static 
verification is an attractive approach for mitigating these 
factors, since it can verify precise correctness properties at 
development time. However, existing tools suffer from a 
combination of insufficient scalability, lack of smooth 
integration into the development process, restriction to 
superficial checking, and prohibitive complexity of use. 
With R-Verify, we have addressed these issues by 
designing a system that tightly integrates with a compiler, 
checks native source-level assertions, and uses a program 
abstraction geared for a more powerful and efficient SAT-
based constraint solver. 

R-Verify can verify deep, bit-level properties of C 
programs making it ideal for verification of embedded 
code, including VSIPL [1] arithmetic code. It takes 
advantage of assertion-based testing methodologies by 
using program assertions as the program specification. That 
is, assertion statements in the program are used directly by 
the verification system as descriptions of correct program 
behavior. Because our tool functions over properties 
expressed in the source language of the program, it is not 
necessary to learn any specialized formalism. We consider 
this to be one of R-Verify’s key competitive advantages. 

R-Verify Development & Verification Cycle 

R-Verify is built on three core Reservoir technologies [2]: 

• R-Stream™, a high-level compiler, which 
contains a state-of-the-art framework that permits 
a wide-range of program analyses 

• Salt™, a constraint translator, which efficiently 
generates optimized constraint systems from high-
level program constraint descriptions 

• Alef™, a multi-processor Boolean satisfiability 
(SAT) solver, which contains novel algorithms 
that allow it to take advantage of HPC hardware 

The R-Stream compiler parses the input C program using 
an industry-standard C parser and performs multiple 
transformation passes to simplify the program structure.  
R-Verify uses the simplified program representation to 
generate a system of Salt language constraints that model 
the execution of the program. It then uses the Salt constraint 
translator and the Alef satisfiability solver to solve this 
constraint system and consequently verify the program.  
R-Verify is currently exposed to developers through a plug-
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in to the Eclipse IDE [3]. Figure 1 illustrates the R-Verify 
development and verification cycle. 

 

Figure 1: R-Verify development and verification process 

Deep Bit-Level Checking 

Figure 2 illustrates how a developer can use the static 
assertion checking capability of R-Verify to isolate deep 
errors in an embedded application. The example program 
uses two optimized, bit-twiddling functions copied from a 
popular compendium of C routines  to calculate (1) the next 
largest power of two (clp2) and (2) the population count 
or the number of non-zero bits in the binary representation 
of an integer (pop1). Using these two functions, the 
example program asserts that all powers of two calculated 
by clp2 contain exactly one non-zero bit (see Figure 2A). 

Unfortunately, the program as written contains an error 
derived from the fixed bit-width of computer integers. 
When the input argument to clp2 becomes large enough, 
the arithmetic inside the function overflows and returns 
zero instead of the correct result (i.e., 231). R-Verify 
correctly identifies this error when verifying the program 
(see Figure 2B). The counterexample gives an instance 
where the assertion fails (see Figure 2C)—when the 
uninitialized integer x has the value 2,147,483,647 (i.e., 
231-1). In this case, the fix for the error is to realize that the 
assertion does not hold for integers greater than a certain 
value due to the limitations of finite precision arithmetic. 
When the assertion is constrained to values between 0 and 
231-1 (exclusive), then R-Verify correctly reports that the 
assertion holds for all executions (see Figure 2D). 

If R-Verify identifies an error in a program, it shows a 
visual execution trace describing a counterexample.  
R-Verify can quickly and efficiently find deep software 
errors that are invisible to superficial abstraction-based 
analysis. These types of errors are common in low-level 
embedded code and can easily go undetected during the 
normal software testing process. These undiscovered errors 
can be fatal in deployed software. 



 

 

Figure 2: Example usage of R-Verify deep checking 

SAT-Based Static Assertion Checking 

R-Verify performs static assertion checking by constructing 
a single satisfiability problem that models the program 
semantics, and uses the Alef parallel SAT solver to 
determine if there is any execution that violates the program 
assertions. The satisfiability problem is constructed from 
two parts: the set of constraints that model the semantics of 
the input program P and the set of constraints that express 
the verification condition or assertions, Q. The verification 
problem is then to find solutions to the formula: P ∧ ¬Q. 
That is, executions consistent with the semantics of the 
input program, but not with its assertions. Counterexamples 
to the assertions can be extracted from solutions to the 
verification problem. If there is no solution, then there is no 
execution that violates any of the program assertions. In this 
case, the program is correct with respect to the assertions. 

The constraints generated are mostly straightforward 
translations of program operations into logical operations 
on bits. For example, the constraints that represent the 
addition of two numbers are similar to the Boolean circuit 
representation of a ripple-carry or carry look-ahead adder. 
Thus, Boolean satisfiability constraints are the natural 
representation for bit-precise operator models and fast SAT 
algorithms make deep analysis in R-Verify tractable.  

Figure 3 presents a sample page from the VSIPL API 
specification that illustrates common types of both 
arithmetic and API call sequence restrictions. R-Verify, in 
conjunction with the static analysis capability already in  
R-Stream, can check each of these conditions. 

 

Figure 3: Sample page from VSIPL specification 

R-Verify renders constraint systems in the Salt constraint 
language for translation to the form required by Alef. The 
Salt translator accepts logical, set-theoretic, and arithmetic 
constraints in the Salt language. Salt arithmetic operators 
support both signed and unsigned arbitrary precision fixed-
point operands and provide built-in support for arithmetic 
overflow constraints. Both truncation and rounding modes 
are supported. The Salt translator exploits the constraint 
semantics to perform optimizations that typically improve 
the search efficiency of the Alef SAT solver by 50-80%. 

The Alef solver is a high-performance solver developed for 
HPC hardware. Alef supports parallelism both in the 
creation of multiple search threads and in the distribution of 
the computationally intense process of Boolean constraint 
propagation (BCP) [4]. When a violation is found, the Alef 
solver returns an assignment that is then trivially decoded 
into an execution trace using a map generated by Salt. 

Conclusion 

R-Verify is an integrated checking tool for embedded code 
designed to provide a deep analysis capability while still 
being easy to use. We are currently applying R-Verify to: 

• Pre- and post-condition checking 

• Memory safety of embedded device drivers, 
interrupt handlers, and VSIPL “admitted” blocks 

• Numerical precision of arithmetic pipelines, with 
an emphasis on VSIPL pipeline implementations 
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