

GENERAL DYNAMICS Advanced Information Systems

Implementation of Parallel Processing Techniques on Graphical Processing Units

Poster C.4

Brad Baker, Wayne Haney, Dr. Charles Choi

Industry Direction

 High performance COTS computing is moving to multi-core and heterogeneous silicon

MULTI-CORE CPU

- Multi-core CPU with smaller individual cores
- GPU co-processor

CURRENT

- Multi-core CPU with 1-3GPU co-processors
- Heterogeneous multi-core (IBM Cell)

FUTURE

Smaller, heterogeneous cores on same silicon

Math Benchmark and Signal Processing String Results

Fundamental Math Benchmarks		
Software Platform (GPU)	1k SGEMM Gflops	1k 1d Complex FFT
Peakstream (AMD r520)	80.13	8.7
CUDA (Nvidia g80)	95	43.4
RapidMind (Nvidia g80)	24	7.5
RapidMind (AMD r520)	26	4.9
Intel Core 2 Quad QX6700	12	14.2
AMD Opteron 265HE	8.8	4.8

Nvidia Cuda Platform

- Utilizes most powerful GPU on market
- Most extensive pre-built math library

Approx. 50%
Performance Gain
Using CUDA's FFT

Application Results Architecture Execution Time VSIPL++ PNB Algorithm on Intel 735.78 msec

CUDA Batch Style PNB Algorithm on Nvidia g80 GPU

Core 2 Quad QX6700 CPU

367.23 msec

GENERAL DYNAMICS Advanced Information Systems

Implementation of Parallel Processing Techniques on Graphical Processing Units

Poster C.4

Brad Baker, Wayne Haney, Dr. Charles Choi