

Implementation of Parallel Processing Techniques
on Graphical Processing Units.

Brad Baker bradley.baker@gd-ais.com, Wayne Haney wayne.haney@gd-ais.com, Charles Choi charles.choi@gd-ais.com.

Abstract
For more than 40 years, computer technology has followed
Moore’s Law, which states that the number of transistors on
an Integrated Circuit (IC) will double every two years. This
doubling, as applied to Central Processing Units (CPUs),
has been used to great effect by software developers,
allowing them to add functionality without needing a larger
hardware footprint. However, as far as traditional CPUs are
concerned the era of Moore’s Law will soon come to a
close: technology is advancing to the point where making
the transistors on a CPU any smaller would defy the laws of
physics. This begs an obvious question: moving forward,
how can one add processing power without increasing the
required hardware footprint? This question suggests a
follow-up: do any of these methods of increasing
processing power have the potential to keep pace with the
theoretical curve of processing power versus time predicted
by Moore’s Law? One potential solution to maintain the
pace of Moore’s Law is to utilize a Graphical Processing
Unit (GPU) to perform the processing. An existing
algorithm that was initially designed for use on a CPU was
ported over for use on a GPU with impressive results. This
paper summarizes a research effort that addresses the
questions and problems that arose for both the planning and
the porting of the application.

Introduction
The computer chip industry has been challenged to find
alternative ways of achieving increases in processing power
without hardware footprint growth. Parallel processing has
emerged as their way forward. One of the promising new
parallel computing platforms comes from the video game
community. The GPU is a relatively inexpensive graphics
accelerator and is a primary platform for a new emerging
field of stream processing. The term stream processing
refers to the parallel execution of a software application to
take advantage of the performance offered by GPUs [1]. A
“stream” is defined as a collection of data, such as an array,
that can be operated on in parallel. Stream processing relies
on a collection of mathematical functions called a “kernel”
that can be applied to each stream. Since the data is
operated on in a stream instead of in memory, there is a
decrease in memory access and therefore an increase in
performance. GPUs are a highly parallel processing unit
and in the past year, several companies and research groups
have been looking into ways to harness them as a
mathematics co-processor. The general consensus in
industry is that if a mathematical algorithm can be written
in a parallel manner, then it is a solid potential candidate for
processing on the GPU. The research team decided to
attempt porting an existing signal processing application to

a GPU in an effort to determine how viable a solution this
technology could be.

Figure 1: Example dual GPU solution.

Methodology
There are two main ideas that presented in this paper, a
technology overview, and an application port. The GPU
was chosen to be investigated and the first task was to
assess the differences between the various commercially
available GPUs. To develop this list, a survey was
conducted by visiting websites that highlight the latest GPU
technology. One primary site of interest was GPGPU.org
[2] which focuses on furthering the utilization of the GPU
for use in non-graphics related problems. There were two
major criteria used in selecting the hardware platforms: 1)
they must be COTS products; 2) they must utilize a unified
shader architecture. The first criterion was used in an effort
to keep the platforms low cost and ensure that they would
be easily accessible in mass quantities. The second
criterion limited the choices of the GPUs to units that do
not utilize a unified architecture as this would add too many
layers of complexity to effectively use it for general
purpose processing.

The application that was chosen to be ported was one that
leveraged the Department of Defense sponsored math API
(VSIPL++) framework. This application was ported over
using Nvidia’s CUDA framework [3]. Concurrently, the
application was altered to use the new CUDA routines
instead of existing VSIPL++ classes and FFT calls and
integrated.

During the first phase, the team discovered that the CUDA
FFT routines could support batch processing. Batch
processing is the ability of the stream processor to perform
parallel math operations on multiple sets of data in one
memory space – similar to threading on CPUs. The
application was modified to make use of this batch
processing by taking the FFT calls out of a for loop.

Results
Overall, approximately 500 lines of code were changed or
added in the application in order to use the FFT library on
the GPU, however most of these changes were to
accommodate breaking the FFT out of a for loop. The
performance boost observed between the original CPU
implementation and the GPU implementation can be seen in
Table 1. It is important to note, however, that time only
allowed implementation of the FFT routines and instead of
both the FFT and vector operations.

Table 1: Test Algorithm Performance Increase

Algorithm Average Time Needed

VSIPL++ Algorithm on
Intel QX6700 CPU

735.78 msec

CUDA on a Nvidia g80
GPU

367.23 msec

The performance of several systems were considered in the
report, and an emphasis on providing a common benchmark
was chosen for comparing multi-core CPUs to GPUs. The
gflop numbers used are all theoretically based; real-world
applications will realize smaller performance. However,
power consumption was measured in a laboratory
environment and represents the overall system draw
including all subcomponents at a full simulated load. Chart
1 illustrates one of the key benefits over performance over
traditional multi-core CPUs.

Performance per Watt

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

AMD Opteron 265HE Intel QX6700 Nvidia 2x 8800GTX*

G
flo

ps
 /

W
at

t

Chart 1: Performance per Watt analysis

Conclusion
In summary, companies which continue to use serial
programming practices will fall behind agile companies
which choose to embrace the new paradigm of parallel
programming. Parallel processing is the only viable
method to take advantage of the higher processing power
that GPUs and multi-core CPUs bring to the table. Once
this is understood, the suitability of the two hardware
solutions comes into greater focus: multi-core CPUs require
the least amount of legacy code modification and are
probably the easiest of the technologies to port to; GPUs are
still in their infancy as a math co-processor and still leave a

lot to be desired in terms of ease of use. However the GPU
is maturing rapidly and its ability to perform large numbers
of floating point operations per second (flops) far exceeds
any other COTS solution.

As the research progressed, the team came to the conclusion
that in general, the GPUs are best suited for algorithms
which involve large amounts of matrix manipulation, or
algorithms where the entire algorithmic string can be
converted into one kernel. Based on this conclusion, the
chosen application was not an ideal candidate for testing
out the GPU, since there was limited matrix manipulation is
performed in this algorithm. However, the gains achieved
by performing minor changes were notable, which signifies
the potential for larger gains in other more well suited
applications.

References
 [1] John D. Owens, David Luebke, Naga Govindaraju, Mark

Harris, Jens Krüger, Aaron E. Lefohn, Timothy J. Purcell, A
Survey of General-Purpose Computation on Graphics
Hardware, Vol. 26, No. 1, 2007.

[2] " General-Purpose Computation Using Graphics Hardware."
GPGPU.org. 24 May 2007. 25 Nov. 2006
<http://www.gpgpu.org>.

[3] "NVIDIA CUDA Homepage." Nvidia.com. 27 Apr. 2007. 11
Dec. 2006 <http://developer.nvidia.com/object/cuda.html>.

