
Accelerating MATLAB with CUDA
Massimiliano Fatica

NVIDIA
mfatica@nvidia.com

Won-Ki Jeong
University of Utah

wkjeong@cs.utah.edu

mailto:mfatica@nvidia.com
mailto:wkjeong@cs.utah.edu

Overview

MATLAB can be easily extended via MEX files to take
advantage of the computational power offered by the latest
NVIDIA GPUs (GeForce 8800, Quadro FX5600, Tesla).

Programming the GPU for computational purposes was a
very cumbersome task before CUDA. Using CUDA, it is now
very easy to achieve impressive speed-up with minimal
effort.

This work is a proof of concept that shows the feasibility and
benefits of using this approach.

MEX file

Even though MATLAB is built on many well-optimized
libraries, some functions can perform better when
written in a compiled language (e.g. C and Fortran).

MATLAB provides a convenient API for interfacing code
written in C and FORTRAN to MATLAB functions with
MEX files.

MEX files could be used to exploit multi-core processors
with OpenMP or threaded codes or like in this case to
offload functions to the GPU.

NVMEX
Native MATLAB script cannot parse CUDA code

New MATLAB script nvmex.m compiles CUDA code
(.cu) to create MATLAB function files

Syntax similar to original mex script:

>> nvmex –f nvmexopts.bat filename.cu –IC:\cuda\include
–LC:\cuda\lib -lcudart

Available for Windows and Linux from:
http://developer.nvidia.com/object/matlab_cuda.html

Mex files for CUDA
A typical mex file will perform the following steps:

1. Convert from double to single precision
2. Rearrange the data layout for complex data
3. Allocate memory on the GPU
4. Transfer the data from the host to the GPU
5. Perform computation on GPU (library, custom code)
6. Transfer results from the GPU to the host
7. Rearrange the data layout for complex data
8. Convert from single to double
9. Clean up memory and return results to MATLAB

Some of these steps will go away with new versions of the library
(2,7) and new hardware (1,8)

CUDA MEX example

/*Parse input, convert to single precision and to interleaved complex format */
…..

/* Allocate array on the GPU */
cufftComplex *rhs_complex_d;
cudaMalloc((void **) &rhs_complex_d,sizeof(cufftComplex)*N*M);

/* Copy input array in interleaved format to the GPU */
cudaMemcpy(rhs_complex_d, input_single, sizeof(cufftComplex)*N*M,

cudaMemcpyHostToDevice);
/* Create plan for CUDA FFT NB: transposing dimensions*/

cufftPlan2d(&plan, N, M, CUFFT_C2C) ;
/* Execute FFT on GPU */

cufftExecC2C(plan, rhs_complex_d, rhs_complex_d, CUFFT_INVERSE) ;
/* Copy result back to host */

cudaMemcpy(input_single, rhs_complex_d, sizeof(cufftComplex)*N*M,
cudaMemcpyDeviceToHost);

/* Clean up memory and plan on the GPU */
cufftDestroy(plan); cudaFree(rhs_complex_d);

/*Convert back to double precision and to split complex format */
….

Additional code in MEX file to handle CUDA

Initial study

Focus on 2D FFTs.

FFT-based methods are often used in single precision
(for example in image processing)

Mex files to overload MATLAB functions, no
modification between the original MATLAB code and
the accelerated one.

Application selected for this study:
solution of the Euler equations in vorticity form using a
pseudo-spectral method.

Implementation details:

Case A) FFT2.mex and IFFT2.mex

Mex file in C with CUDA FFT functions.

Standard mex script could be used.

Overall effort: few hours

Case B) Szeta.mex: Vorticity source term written in CUDA

Mex file in CUDA with calls to CUDA FFT functions.

Small modifications necessary to handle files with a .cu suffix

Overall effort: ½ hour (starting from working mex file for 2D FFT)

Configuration

Hardware:

AMD Opteron 250 with 4 GB of memory

NVIDIA GeForce 8800 GTX

Software:

Windows XP and Microsoft VC8 compiler

RedHat Enterprise Linux 4 32 bit, gcc compiler

MATLAB R2006b

CUDA 1.0

FFT2 performance

Vorticity source term

function S = Szeta(zeta,k,nu4)

% Pseudospectral calculation of vorticity source term
% S = -(- psi_y*zeta_x + psi_x*zeta_y) + nu4*del^4 zeta
% on a square periodic domain, where zeta = psi_xx + psi_yy is an NxN matrix
% of vorticity and k is vector of Fourier wavenumbers in each direction.
% Output is an NxN matrix of S at all pseudospectral gridpoints

zetahat = fft2(zeta);
[KX KY] = meshgrid(k,k);

% Matrix of (x,y) wavenumbers corresponding
% to Fourier mode (m,n)

del2 = -(KX.^2 + KY.^2);
del2(1,1) = 1; % Set to nonzero to avoid division by zero when inverting

% Laplacian to get psi
psihat = zetahat./del2;
dpsidx = real(ifft2(1i*KX.*psihat));
dpsidy = real(ifft2(1i*KY.*psihat));
dzetadx = real(ifft2(1i*KX.*zetahat));
dzetady = real(ifft2(1i*KY.*zetahat));
diff4 = real(ifft2(del2.^2.*zetahat));
S = -(-dpsidy.*dzetadx + dpsidx.*dzetady) - nu4*diff4;

http://www.amath.washington.edu/courses/571-winter-2006/matlab/Szeta.m

Caveats

The current CUDA FFT library only supports interleaved format for
complex data while MATLAB stores all the real data followed by the
imaginary data.

Complex to complex (C2C) transforms used

The accelerated computations are not taking advantage of the symmetry
of the transforms.

The current GPU hardware only supports single precision (double
precision will be available in the next generation GPU towards the end
of the year). Conversion to/from single from/to double is consuming a
significant portion of wall clock time.

Advection of an elliptic vortex

MATLAB
168 seconds

MATLAB with CUDA
(single precision FFTs)
14.9 seconds (11x)

256x256 mesh, 512 RK4 steps, Linux, MATLAB file
http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_vortex.m

Pseudo-spectral simulation of 2D Isotropic
turbulence.

MATLAB
992 seconds

MATLAB with CUDA
(single precision FFTs)
93 seconds

512x512 mesh, 400 RK4 steps, Windows XP, MATLAB file
http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2Dturb.m

Power spectrum of vorticity is very sensitive to fine
scales. Result from original MATLAB run and CUDA
accelerated one are in excellent agreement

MATLAB run CUDA accelerated MATLAB run

Timing details

Runtime
Opteron 250

Speed
up

Runtime
Opteron 2210

Speed
up

PCI-e Bandwidth:
Host to/from device

1135 MB/s
1003 MB/s

1483 MB/s
1223 MB/s

Standard MATLAB 8098 s 9525s

Overload FFT2 and IFFT2 4425 s 1.8x 4937s 1.9x

Overload Szeta 735 s 11.x 789s 12.X

Overload Szeta , FFT2 and
IFFT2

577 s 14.x 605s 15.7x

1024x1024 mesh, 400 RK4 steps on Windows,
2D isotropic turbulence

Conclusion

Integration of CUDA is straightforward as a MEX
plug-in
No need for users to leave MATLAB to run big
simulations:

high productivity
Relevant speed-ups even for small size grids
Plenty of opportunities for further optimizations

	Accelerating MATLAB with CUDA
	Overview
	MEX file
	NVMEX 	
	Mex files for CUDA
	CUDA MEX example
	Initial study
	Implementation details:
	Configuration
	FFT2 performance
	Vorticity source term
	Caveats
	Advection of an elliptic vortex
	Pseudo-spectral simulation of 2D Isotropic turbulence.
	Slide Number 15
	Timing details
	Conclusion

