

Accelerating MATLAB with CUDA
Massimiliano Fatica (mfatica@nvidia.com), NVIDIA

Won-Ki Jeong (wkjeong@cs.utah.edu), University of Utah

Introduction
†

MATLAB
®‡

 is a powerful tool for prototyping and analysis.

MATLAB could be easily extended via MEX files to take

advantage of the computational power offered by the latest

NVIDIA graphics processor unit (GPU). The graphic

processor can be considered as a compute device that is

capable of efficiently executing data parallel computations,

and using CUDA, (Compute Unified Device Architecture

[1]) can be programmed using a C-like language. MEX-

files are a way to call custom C or FORTRAN code directly

from MATLAB as if they were MATLAB built-in

functions.

This presentation will show the feasibility and benefits of

using this approach: with the achieved speed-up, there is no

need to recode the application in C or FORTRAN.

CUDA

CUDA technology gives computationally intensive

applications access to the tremendous processing power of

the latest GPUs through a C-like programming interface.

The GeForce 8 series GPUs have up to 128 processors

running at 1.5 GHz and up to 1.5GB of on-board memory.

CUDA is designed from the ground-up for efficient general

purpose computation on GPUs. It uses a C-like

programming language and does not require remapping

algorithms to graphics concepts.

CUDA exposes several hardware features that are not

available via the graphics API. The most significant of

these is shared memory, which is a small (currently 16KB

per multiprocessor) area of on-chip memory which can be

accessed in parallel by blocks of threads. This allows

caching of frequently used data and can provide large

speedups over using textures to access data. Combined with

a thread synchronization primitive, this allows cooperative

parallel processing of on-chip data, greatly reducing the

expensive off-chip bandwidth requirements of many

parallel algorithms. This benefits a number of common

applications such as linear algebra, Fast Fourier

Transforms, and image processing filters.

The current generation of GPU from NVIDIA has support

for IEEE single precision. Double precision support will be

available in the next generation towards the end of the year.

There are however several fields in which significant results

can be obtained with single precision: image and signal

processing and some numerical methods like pseudo-

spectral approximation are just few examples.

‡ MATLAB is a registered trademark of The MathWorks, Inc.

An application to vortex dynamics.

The examples used in this abstract are from a class on

atmospheric research at the University of Washington [2].

The MATLAB scripts solve the Euler equation in vorticity-

stream function using a pseudo-spectral method. Pseudo-

spectral methods are very well conditioned and some

operations can be safely performed in single precision

without affecting the overall quality of the solution.

The MATLAB code can be easily modified to solve

problems with different initial conditions or forcing: for

example to study the evolution of an elliptic vortex or 2D

isotropic turbulence. The code is heavily FFT based. The

system used in the benchmark has an Opteron 250

processor (running at 2.4Ghz) and a Quadro FX5600 GPU.

All the results were obtained with MATLAB R2006B, both

under Windows and Linux. In order to interface CUDA and

MATLAB, we had to slightly modify the MEX

infrastructure. CUDA files have a .cu suffix and needs to be

compiled with a specific compiler (nvcc). Once we had a

working infrastructure under Windows and Linux, the

coding of the MEX functions was very simple. The non-

linear term function, for example, was ported to CUDA in

less than an hour.

We performed the work in two steps: the first one was to

write MEX files for theFFT2 and IFFT2 functions in

MATLAB calling the CUFFT library. The second one was

to port the function computing the non-linear term of the

Euler equation to CUDA. The MATLAB code is running in

double precision and the data is transformed to single

precision before it is transferred to the GPU. The

computation on the GPU is performed in single precision

and the result is transformed back to double precision

before it is returned to MATLAB.

Table 1 shows the speed-up for the 2D isotropic turbulence

case.

Table 1: Timing details for 400 Runge-Kutta steps on a

1024x1024 mesh for 2D isotropic turbulence simulation on

Windows.

 Runtime
Speed-

up

Standard MATLAB 8098 s

Overload FFT2 and

IFFT2
4425 s 1.8 x

Overload Non-linear

term
735 s 11. x

Overload Non-linear

term, FFT2 and IFFT2
577 s 14. x

The CUDA code is not yet taking advantage of the

symmetries of real transforms (the original code was

written when CUFFT was only supporting complex to

complex transforms). The speed-up will increase even

further by using real to complex and complex to real

transforms (only half the data needs to be transferred and

computed). Even with this limitation, the speed-up obtained

is quite significant.

Figures 1a and 1b compare the final results of the original

MATLAB implementation with the one accelerated with

CUDA for the advection of an elliptic vortex. At the end of

the computed time interval, the stream function and

vorticity fields are virtually the same.

Figure 1a: Advection of an elliptic vortex on a 256x256 mesh,

stream function (left), vorticity (right): MATLAB on Linux,

168 sec

Figure 1b: Advection of an elliptic vortex on a 256x256 mesh,

stream function (left), vorticity (right) :MATLAB with CUDA

on Linux, 14.9 sec

To do a better comparison of the quality of the results, we

have also run a 2D isotropic turbulence simulation at

different resolutions and compared the vorticity power

spectra of the 2 runs, one with the original MATLAB (Fig

2a) and the other one with MATLAB accelerated with

CUDA (Fig 2b). Even for this quantity, that is very sensible

to fine scales, the results are in excellent agreement.

The scripts created to compile CUDA MEX files are very

easy to use. From the command prompt in MATLAB, the

user needs to invoke nvmex instead of the regular mex

script:

Figure 2a: Vorticity power spectrum for 2D isotropic

turbulence, MATLAB .

Figure 2b: Vorticity power spectrum for 2D isotropic

turbulence, MATLAB with CUDA.

Conclusion

The combination of MATLAB and CUDA enables high-

productivity and high-performance solutions and with

GeForce 8 series GPUs now available even in laptops, will

be a very effective tool for engineers and scientists.

The scripts to compile CUDA MEX files and some

examples are now available for download [3].

References

[1] http://developer.nvidia.com/cuda

[2] http://www.amath.washington.edu/courses/571-winter-

2006/matlab

[3] http://developer.nvidia.com/object/matlab_cuda.html

nvmex -f nvmexopts.bat filename.cu -IC:\cuda\include

-LC:\cuda\lib -lcudart

