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Introduction 
This poster is a study on the portability of applications 
developed in Gedae by analyzing the work that was 
required to move an example application from simulation 
on a PC to running on a DSP board (the Mercury 
AdapDev™ system), and then to running on a multicore 
processor (the Sony/IBM/Toshiba Cell Broadband 
Engine™ (BE)).  We will illustrate how the architecture 
considerations were taken into account when porting the 
application to each system and quantify both the work 
required to port the application and the performance of the 
application on each system.  The poster presentation will 
also include a demonstration of the application running on 
the Cell/BE in the Sony Playstation 3 with realtime input 
and output, as well as a demonstration of the simulation of 
the application. 

 

 
Application 
The example application involves tracking a model train as 
it goes in a circular path around its track.  The application 
uses input audio data from four microphones placed in a 
circle around the track to locate the train in the audio field.  
Using this location, the application pans and tilts a camera 
to point at the engine of the train.  An illustration of this 
environment is shown in Figure 1. 
 

 
Figure 1 – The tracking algorithm targets a train running on a 
track, with 4 microphones as sensor inputs. 

The algorithm is based on RADAR technology.  A 
beamformer correlates a linear array of RADAR sensors to 
identify a target based on a beam of high correlation.  In 
this application, the array is circular, so the high intensity in 
the correlation of the four channels forms a spot, as shown 
in Figure 2.  After the spot formation forms this audio map, 
a detection algorithm identifies the high intensity peak 
corresponding to the train, and pan and tilt angles are 
computed to reposition the camera.   
 

Because this application must continue to work in noisy 
environments, several approaches are used to reduce jitter 
and ensure smooth tracking.  The input channels are run 
through low pass filtering to remove frequencies outside the 
desired band.  In the detection algorithm, several peaks are 
identified and tested, and feedback is used to monitor the 
speed and direction of the train to help rule out spurious 
peaks in the correlation data. 
 

 
Figure 2 - The correlation of the four audio channels forms a 
spot of high intensity. 

Simulation 
The application was first developed as a simulation.  The 
environment of the train and camera was simulated, and the 
four channels of audio data for the microphone array were 
read from files.  To show the results of the simulation, a 3D 
rendering of the scene is presented from the view angle of 
the camera, as shown in Figure 3.  
 

 
Figure 3 - The simulation includes rendering of a 3-D model of 

the environment. 

Using Gedae-Simulation, experiments were done on 
multiprocessor implementations of the application to 
prepare for moving it to hardware processing realtime data.  
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Once created, the code of a Gedae application does not 
have to be changed in order to partition and map it to 
multiple processors.  During simulation, several mappings 
to virtual processors were used, in different configurations, 
and the results were analyzed in the Gedae Trace Table. 
 
Multiprocessor DSP Implementation 
To transition this application to using real world data, we 
ported it to the Mercury AdapDev system.  The Mercury 
AdapDev system provides an Intel Pentium host and two 
quad DSP boards where each DSP is a 500MHz AltiVec 
processor.  Physical components for the camera, gimbal, 
microphones, and audio digital converter (ADC) were 
assembled.  The application was altered to remove the 
artificial audio source and scene rendering and replace it 
with an interface to the ADC (via PCI), the gimbal (via 
serial port), and the camera (via USB). 
 
While the sources and sinks were replaced to use real world 
data, the algorithms and their coding did not need to be 
changed to create a realtime implementation.  Using our 
experiments from the simulation, a partitioning and 
mapping scheme was entered into the Partition and Map 
Partition Tables shown in Figure 4.  The communication 
protocols were tweaking using the Transfer Table, picking 
direct schedule access transfers (equivalent to DMA) and 
removing the blocking of the host-to-DSP transfers.  
Additionally, automated stripmining was used to optimize 
vectorization and improve cache utilization.  These 
changes, include both changing the graph to use real world 
data and setting the implementation parameters, took one 
day of effort and the resulting implementation is able to 
process three frames per second – sufficient to track the 
train at its maximum speed with a low number of errors or 
jitter. 
 

 
Figure 4 - Application was mapped to multiple DSP processors 
without changing the code. 

Multicore Implementation 
To illustrate support for the Cell/BE, this application was 
ported to the Sony Playstation 3.  The Cell/BE on the Sony 
Playstation 3 provides a dual threaded Power Processing 
Element (PPE) core as well as six Synergistic Processing 
Elements (SPE), as shown in Figure 5.  The SPEs are very 
efficient vector processors but have very tight memory 

restrictions, with only 256KB of local storage and no cache.  
Programming the Cell/BE by hand requires careful 
management and planning of memory and data movement 
between the SPEs. 
 
Gedae addresses the issues of memory management and 
data movement directly.  The automated implementation of 
these issues simplifies development for the Cell/BE.  After 
altering the application to use a USB-based ADC (the 
Playstation 3 does not have a PCI slot), the application was 
easily moved to the Cell/BE, and the process of optimizing 
it for the multicore architecture took two hours. 
 
To optimize the application for the Cell/BE, the compute-
intensive signal processing portion of the application is 
partitioned for the six SPEs.  The memory footprint of the 
program and data is taken into account during this process, 
using the Schedule Parameters dialog to analyze the size of 
the threads that will be created for each partition.  To 
reduce the size of the memory footprint, the automated 
stripmining capability is used, allowing a set of audio 
vectors to be processed independently on each SPE instead 
of en masse.  Additionally, a primitive that performs a 
column-wise sum of a matrix is identified as pushing the 
thread memory size over the limit.  To fix the issue, the 
primitive is replaced with one that integrates a series of row 
vectors.   
 
The Gedae Trace Table is used to analyze the performance 
when running on the Cell/BE.  During this process, one 
primitive wass identified as being slow, and it was recoded 
to use a unity stride.  Based on the processor load, the 
distribution of the work was also altered.  After two hours, 
in the final optimization, four SPEs are used to do a 
majority of the preprocessing (one SPE per audio channel), 
including the band filtering of the frequency spectrum.  The 
other two SPEs are used to combine the data in the 
correlation calculation of the spot formation.  The PPE 
performs the detection algorithm and interfaces with the I/O 
devices.  With this implementation, the application is able 
to process almost 15 frames a second on the Cell/BE, 
providing a much smoother tracking of the train. 
 

 
Figure 5 - The Cell/BE provides a PPE core and 8 SPE cores 
(6 enabled on the Playstation 3). 

 


