
Gedae Portability: From Simulation to DSPs to the Cell Broadband Engine
James Steed (jsteed@gedae.com), William Lundgren (wlundgren@gedae.com), Kerry Barnes (kbarnes@gedae.com)

Gedae, Inc., 1247 N. Church St., Suite 5, Moorestown, NJ 08057

Introduction
This poster is a study on the portability of applications
developed in Gedae by analyzing the work that was
required to move an example application from simulation
on a PC to running on a DSP board (the Mercury
AdapDev™ system), and then to running on a multicore
processor (the Sony/IBM/Toshiba Cell Broadband
Engine™ (BE)). We will illustrate how the architecture
considerations were taken into account when porting the
application to each system and quantify both the work
required to port the application and the performance of the
application on each system. The poster presentation will
also include a demonstration of the application running on
the Cell/BE in the Sony Playstation 3 with realtime input
and output, as well as a demonstration of the simulation of
the application.

Application
The example application involves tracking a model train as
it goes in a circular path around its track. The application
uses input audio data from four microphones placed in a
circle around the track to locate the train in the audio field.
Using this location, the application pans and tilts a camera
to point at the engine of the train. An illustration of this
environment is shown in Figure 1.

Figure 1 – The tracking algorithm targets a train running on a
track, with 4 microphones as sensor inputs.

The algorithm is based on RADAR technology. A
beamformer correlates a linear array of RADAR sensors to
identify a target based on a beam of high correlation. In
this application, the array is circular, so the high intensity in
the correlation of the four channels forms a spot, as shown
in Figure 2. After the spot formation forms this audio map,
a detection algorithm identifies the high intensity peak
corresponding to the train, and pan and tilt angles are
computed to reposition the camera.

Because this application must continue to work in noisy
environments, several approaches are used to reduce jitter
and ensure smooth tracking. The input channels are run
through low pass filtering to remove frequencies outside the
desired band. In the detection algorithm, several peaks are
identified and tested, and feedback is used to monitor the
speed and direction of the train to help rule out spurious
peaks in the correlation data.

Figure 2 - The correlation of the four audio channels forms a
spot of high intensity.

Simulation
The application was first developed as a simulation. The
environment of the train and camera was simulated, and the
four channels of audio data for the microphone array were
read from files. To show the results of the simulation, a 3D
rendering of the scene is presented from the view angle of
the camera, as shown in Figure 3.

Figure 3 - The simulation includes rendering of a 3-D model of

the environment.

Using Gedae-Simulation, experiments were done on
multiprocessor implementations of the application to
prepare for moving it to hardware processing realtime data.

Sensor
Array

Train

Train
Track

Camera on
Gimbal

mailto:jsteed@gedae.com
mailto:wlundgren@gedae.com
mailto:kbarnes@gedae.com

Once created, the code of a Gedae application does not
have to be changed in order to partition and map it to
multiple processors. During simulation, several mappings
to virtual processors were used, in different configurations,
and the results were analyzed in the Gedae Trace Table.

Multiprocessor DSP Implementation
To transition this application to using real world data, we
ported it to the Mercury AdapDev system. The Mercury
AdapDev system provides an Intel Pentium host and two
quad DSP boards where each DSP is a 500MHz AltiVec
processor. Physical components for the camera, gimbal,
microphones, and audio digital converter (ADC) were
assembled. The application was altered to remove the
artificial audio source and scene rendering and replace it
with an interface to the ADC (via PCI), the gimbal (via
serial port), and the camera (via USB).

While the sources and sinks were replaced to use real world
data, the algorithms and their coding did not need to be
changed to create a realtime implementation. Using our
experiments from the simulation, a partitioning and
mapping scheme was entered into the Partition and Map
Partition Tables shown in Figure 4. The communication
protocols were tweaking using the Transfer Table, picking
direct schedule access transfers (equivalent to DMA) and
removing the blocking of the host-to-DSP transfers.
Additionally, automated stripmining was used to optimize
vectorization and improve cache utilization. These
changes, include both changing the graph to use real world
data and setting the implementation parameters, took one
day of effort and the resulting implementation is able to
process three frames per second – sufficient to track the
train at its maximum speed with a low number of errors or
jitter.

Figure 4 - Application was mapped to multiple DSP processors
without changing the code.

Multicore Implementation
To illustrate support for the Cell/BE, this application was
ported to the Sony Playstation 3. The Cell/BE on the Sony
Playstation 3 provides a dual threaded Power Processing
Element (PPE) core as well as six Synergistic Processing
Elements (SPE), as shown in Figure 5. The SPEs are very
efficient vector processors but have very tight memory

restrictions, with only 256KB of local storage and no cache.
Programming the Cell/BE by hand requires careful
management and planning of memory and data movement
between the SPEs.

Gedae addresses the issues of memory management and
data movement directly. The automated implementation of
these issues simplifies development for the Cell/BE. After
altering the application to use a USB-based ADC (the
Playstation 3 does not have a PCI slot), the application was
easily moved to the Cell/BE, and the process of optimizing
it for the multicore architecture took two hours.

To optimize the application for the Cell/BE, the compute-
intensive signal processing portion of the application is
partitioned for the six SPEs. The memory footprint of the
program and data is taken into account during this process,
using the Schedule Parameters dialog to analyze the size of
the threads that will be created for each partition. To
reduce the size of the memory footprint, the automated
stripmining capability is used, allowing a set of audio
vectors to be processed independently on each SPE instead
of en masse. Additionally, a primitive that performs a
column-wise sum of a matrix is identified as pushing the
thread memory size over the limit. To fix the issue, the
primitive is replaced with one that integrates a series of row
vectors.

The Gedae Trace Table is used to analyze the performance
when running on the Cell/BE. During this process, one
primitive wass identified as being slow, and it was recoded
to use a unity stride. Based on the processor load, the
distribution of the work was also altered. After two hours,
in the final optimization, four SPEs are used to do a
majority of the preprocessing (one SPE per audio channel),
including the band filtering of the frequency spectrum. The
other two SPEs are used to combine the data in the
correlation calculation of the spot formation. The PPE
performs the detection algorithm and interfaces with the I/O
devices. With this implementation, the application is able
to process almost 15 frames a second on the Cell/BE,
providing a much smoother tracking of the train.

Figure 5 - The Cell/BE provides a PPE core and 8 SPE cores
(6 enabled on the Playstation 3).

