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Introduction
Graphics processors (GPUs) make an attractive platform for 
numerically-intensive calculation because of their 
inexpensive high-performance SIMD arrays originally 
designed to shade pixel fragments.  These arrays consist of 
up to several dozen processors connected to a high-
bandwidth (greater than 100 GB/sec on current hardware), 
latency-hiding memory system [1].  This combination can 
outperform CPUs, sometimes by more than an order of 
magnitude, on numerically-intense applications.   Examples 
of algorithms that have been implemented with success on 
GPUs range from collision detection and response to 
medical image segmentation to fluid simulation. 

Unfortunately, such implementations rely on either 
OpenGL [2] or Direct3D [3] to access the hardware.  
OpenGL and Direct3D contain many elements irrelevant to 
GPU computation, and failure to ensure that such elements 
are set properly can lead to confusion program errors.  
More significant is that these APIs, by design, hide 
architectural details that are of importance to GPU 
programmers.  As part of this hiding, graphics drivers make 
policy decisions, such as where data resides in memory and 
when they are copied, that may dramatically reduce the 
performance of non-graphics application, thereby 
undermining the motivation to implement a algorithm on a 
GPU in the first place.

Recently, Nvidia has released CUDA (Compute Unified 
Device Architecture) [4].  While CUDA relieves developers 
of so-called GPGPU (general purpose computation using 
graphics hardware) applications of dealing with extraneous, 
graphics-centric settings, CUDA still hides the underly 
hardware and does not allow the application developer to 
make low-level optimizations which can prevent an 
application from achieving peak performance from the 
hardware.  Also, CUDA is focused solely on graphics 
hardware.

The following two sections briefly describe two of our APIs 
for accelerated computing: HAL - Hardware Abstraction 
Layer, and CAL - Compute Abstraction Layer.  Both of 
which were developed with the lessons learned during the 
development CTM [5]. Figure 1 shows the relationship of 
HAL and CAL to the application software stack.  Finally, 
some preliminary results are presented from current 
research to accelerate AES and DES key searches using 
graphics hardware.

HAL - Hardware Abstraction Layer
The Hardware Abstraction Layer (HAL) exposes the 
graphics hardware directly to the programmer.  While it 
allows for applications to squeeze as much performance out 

of the hardware as possible, portions of HAL are device 
specific, and applications that directly use HAL are not 
necessary forward compatible: GPUs in the past have had 
the luxury of being exposed to programmers via a high-
level API, as such each new generation of GPUs can be 
dramatically different from previous generation.  For 
example, AMD’s X1K family (R5XX) of graphics 
processors has a completely different instruction set 
architecture from AMD’s HD2K family (R6XX). 

Abstractly, a HAL exposes the the five major components 
of a GPU: a command processor, a memory controller, 
render back-ends (sometimes referred to as ROPs),  texture 
(memory) address logic, and a data parallel processor array.

The command processor accepts commands from 
applications packed into a command buffer.  These 
commands are device specific and include program code for 
the processor array,  cache control and invalidation,  input 
and output locations, et cetera.  Additionally, the command 
processor is responsible for scheduling the processor array.

The render back-ends are dedicated hardware typically 
designed to handle tasks such as z-buffering,  bending, and 
stencil tests.  An example z-buffer mode would only write 
incoming fragments to memory if they are smaller than the 
value already stored at specific location. 
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Figure 1: The compute abstraction layer (CAL) hardware 
abstraction layer (HAL) show in relation to the application 
programming stack. 



The address logic takes care of converting 2D and 3D 
locations in to memory addresses.  Additionally, the texture 
address units typically contain filtering hardware to perform 
bi-linear and tri-linear interpolation.  Typically GPUs have 
multiple addressing modes besides a simple linear 
addressing; tiled modes are included as well to increase 
texture cache efficiency with graphics applications. 

The data parallel processing array (fragment processors in 
graphics hardware parlance) is the computational heart of 
modern graphics processors.   It can access some number of 
inputs (textures), and some number of outputs (render 
targets and z-buffer).   Beyond this, the details of the 
processing capabilities of the processor array are machine 
specific.  HAL specifies an application binary interface 
(ABI) that exposes the native instruction set of the 
processor arrays. 

Exposing the native instruction set of the processor array 
brings several benefits.  First, once a program is compiled 
(or directly hand-coded in assembly) it is immune to 
compiler changes resulting from driver updates that might 
affect performance (or even correctness).  Further, access to  
machine language simplifies performance tuning when a 
compiler fails to produce code of the desired efficiency.  

Finally, since HAL gives the programmer direct access to 
the hardware, it facilitates the development of compute 
libraries and novel compilers.  Additionally,  it is the only 
API that we are aware of that allows applications to have 
low-level access to graphics hardware.  The has great 
potential benefits for high-performance embedded systems.

CAL - Compute Abstraction Layer
At a higher level,  the Compute Abstraction Layer (CAL) is 
designed to provide a forward-compatible,  interface to the 
high-performance, floating-point, parallel processor arrays 
found in graphics hardware and CPUs.   The computational 
model of CAL is processor independent and allows the user 
to easily switch from directing  a computation from GPU to 
CPU or vice versa.   CAL was designed with the following 
goals in mind:

1. Ease of programming

2. Optimized multi-GPUs and multi-core CPU support

3. An easy environment to develop compute kernels

4. Multiple OS platforms such as Windows XP, Windows 
Vista, Linux (32-bit and 64-bit on all)

A CAL system is comprised of at least one CPU device and 
zero or more GPU devices.  Both CPU and GPU devices 
can communicate with its own memory subsystems.  A 
single memory subsystem is attached to the all CPU devices 
and is also known as system memory. The memory 
subsystem attached to each GPU device is known as that 
GPU’s local memory.  CPU devices can read and write to 
the system memory (current bandwidths are approximately 
8 to 10 GB/s).   Each GPU device can read and write to its 
own local memory (current GPU bandwidths are greater 
than 100 GB/s).   PCI Express, allows CPU devices to read 
and write to the GPU device memory and the GPU device 
to read and write the system memory.  Additionally, CAL 

has support for a given GPU in a multi-GPU system to read 
and write to another GPU’s device memory, also known as 
peer-to-peer transfer.

An important feature of CAL, is that the application 
developer is given the flexibility to perform  unique 
optimizations; unlike API’s such as OpenGL, DirectX, and 
CUDA, CAL exposes the GPU’s ability to read and write 
from system memory.  Since the application developer is not 
forced to copy data from system memory to local GPU 
memory, he or she is free to make optimizations where 
reading or writing to system memory can yield performance 
benefits.   For example, it is possible to double performance 
when applying several image processing filters (e.g. bayer-
pattern to RGB conversion, image warping, etc) on 
captured video frames that will be further processed on the 
CPU by reading from and writing to system memory.  
Alternatively, the developer is also given access to a DMA 
engine that can be used to asynchronously transfer data 
across different memory systems when available.

CAL compute kernels can be developed using a variety 
methods and languages, and includes an extensible 
compiler interface for new compilers to be added by third 
parties.  Currently, CAL provides support for using HLSL 
and GLSL, both of which are high level shading languages.  
Additionally, an internally developed architecture-agnostic 
assembly language is supported.  Finally,  the Brook [6] 
streaming extension to the C-language are natively 
supported.

DES and AES key search
The presented results are for current and ongoing research.  
One example application of using AMD’s accelerated 
computing API’s is performing DES and AES key searches.  
On a single HD 2900 XT, we able to test keys at a rate of 
approximately 40 Gbps.  Note, this rate is approximately 70 
times that of a single CPU.  To perform a brute force search 
on a single GPU an average of 255 keys would have to be 
tested, which would take approximately 1.79 years.  Using 
a parallel cluster of 1000 GPUs, the same brute force search 
could be performed in approximately 16 hours.  With AES, 
our current implementation tests keys at a rate of 21 Gbps.  
One obvious extension is to use a directed attack instead of 
simply performing a brute force search.
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