
Hardware and Compute Abstraction Layers For Accelerated Computing
Using Graphics Hardware and Conventional CPUs

Justin Hensley
justin.hensley@amd.com

Graphics Product Group, Advanced Micro Devices, Inc.

Introduction
Graphics processors (GPUs) make an attractive platform for
numerically-intensive calculation because of their
inexpensive high-performance SIMD arrays originally
designed to shade pixel fragments. These arrays consist of
up to several dozen processors connected to a high-
bandwidth (greater than 100 GB/sec on current hardware),
latency-hiding memory system [1]. This combination can
outperform CPUs, sometimes by more than an order of
magnitude, on numerically-intense applications. Examples
of algorithms that have been implemented with success on
GPUs range from collision detection and response to
medical image segmentation to fluid simulation.

Unfortunately, such implementations rely on either
OpenGL [2] or Direct3D [3] to access the hardware.
OpenGL and Direct3D contain many elements irrelevant to
GPU computation, and failure to ensure that such elements
are set properly can lead to confusion program errors.
More significant is that these APIs, by design, hide
architectural details that are of importance to GPU
programmers. As part of this hiding, graphics drivers make
policy decisions, such as where data resides in memory and
when they are copied, that may dramatically reduce the
performance of non-graphics application, thereby
undermining the motivation to implement a algorithm on a
GPU in the first place.

Recently, Nvidia has released CUDA (Compute Unified
Device Architecture) [4]. While CUDA relieves developers
of so-called GPGPU (general purpose computation using
graphics hardware) applications of dealing with extraneous,
graphics-centric settings, CUDA still hides the underly
hardware and does not allow the application developer to
make low-level optimizations which can prevent an
application from achieving peak performance from the
hardware. Also, CUDA is focused solely on graphics
hardware.

The following two sections briefly describe two of our APIs
for accelerated computing: HAL - Hardware Abstraction
Layer, and CAL - Compute Abstraction Layer. Both of
which were developed with the lessons learned during the
development CTM [5]. Figure 1 shows the relationship of
HAL and CAL to the application software stack. Finally,
some preliminary results are presented from current
research to accelerate AES and DES key searches using
graphics hardware.

HAL - Hardware Abstraction Layer
The Hardware Abstraction Layer (HAL) exposes the
graphics hardware directly to the programmer. While it
allows for applications to squeeze as much performance out

of the hardware as possible, portions of HAL are device
specific, and applications that directly use HAL are not
necessary forward compatible: GPUs in the past have had
the luxury of being exposed to programmers via a high-
level API, as such each new generation of GPUs can be
dramatically different from previous generation. For
example, AMD’s X1K family (R5XX) of graphics
processors has a completely different instruction set
architecture from AMD’s HD2K family (R6XX).

Abstractly, a HAL exposes the the five major components
of a GPU: a command processor, a memory controller,
render back-ends (sometimes referred to as ROPs), texture
(memory) address logic, and a data parallel processor array.

The command processor accepts commands from
applications packed into a command buffer. These
commands are device specific and include program code for
the processor array, cache control and invalidation, input
and output locations, et cetera. Additionally, the command
processor is responsible for scheduling the processor array.

The render back-ends are dedicated hardware typically
designed to handle tasks such as z-buffering, bending, and
stencil tests. An example z-buffer mode would only write
incoming fragments to memory if they are smaller than the
value already stored at specific location.

GPU CPU
GPU

GPU
GPU

CPU
CPU

CPU

Application

Compute Abstraction Layer
(CAL)

OS

Hardware Abstraction Layer
(HAL)

Language
Extensions

Brook, StreamIT, etc.

Figure 1: The compute abstraction layer (CAL) hardware
abstraction layer (HAL) show in relation to the application
programming stack.

The address logic takes care of converting 2D and 3D
locations in to memory addresses. Additionally, the texture
address units typically contain filtering hardware to perform
bi-linear and tri-linear interpolation. Typically GPUs have
multiple addressing modes besides a simple linear
addressing; tiled modes are included as well to increase
texture cache efficiency with graphics applications.

The data parallel processing array (fragment processors in
graphics hardware parlance) is the computational heart of
modern graphics processors. It can access some number of
inputs (textures), and some number of outputs (render
targets and z-buffer). Beyond this, the details of the
processing capabilities of the processor array are machine
specific. HAL specifies an application binary interface
(ABI) that exposes the native instruction set of the
processor arrays.

Exposing the native instruction set of the processor array
brings several benefits. First, once a program is compiled
(or directly hand-coded in assembly) it is immune to
compiler changes resulting from driver updates that might
affect performance (or even correctness). Further, access to
machine language simplifies performance tuning when a
compiler fails to produce code of the desired efficiency.

Finally, since HAL gives the programmer direct access to
the hardware, it facilitates the development of compute
libraries and novel compilers. Additionally, it is the only
API that we are aware of that allows applications to have
low-level access to graphics hardware. The has great
potential benefits for high-performance embedded systems.

CAL - Compute Abstraction Layer
At a higher level, the Compute Abstraction Layer (CAL) is
designed to provide a forward-compatible, interface to the
high-performance, floating-point, parallel processor arrays
found in graphics hardware and CPUs. The computational
model of CAL is processor independent and allows the user
to easily switch from directing a computation from GPU to
CPU or vice versa. CAL was designed with the following
goals in mind:

1. Ease of programming

2. Optimized multi-GPUs and multi-core CPU support

3. An easy environment to develop compute kernels

4. Multiple OS platforms such as Windows XP, Windows
Vista, Linux (32-bit and 64-bit on all)

A CAL system is comprised of at least one CPU device and
zero or more GPU devices. Both CPU and GPU devices
can communicate with its own memory subsystems. A
single memory subsystem is attached to the all CPU devices
and is also known as system memory. The memory
subsystem attached to each GPU device is known as that
GPU’s local memory. CPU devices can read and write to
the system memory (current bandwidths are approximately
8 to 10 GB/s). Each GPU device can read and write to its
own local memory (current GPU bandwidths are greater
than 100 GB/s). PCI Express, allows CPU devices to read
and write to the GPU device memory and the GPU device
to read and write the system memory. Additionally, CAL

has support for a given GPU in a multi-GPU system to read
and write to another GPU’s device memory, also known as
peer-to-peer transfer.

An important feature of CAL, is that the application
developer is given the flexibility to perform unique
optimizations; unlike API’s such as OpenGL, DirectX, and
CUDA, CAL exposes the GPU’s ability to read and write
from system memory. Since the application developer is not
forced to copy data from system memory to local GPU
memory, he or she is free to make optimizations where
reading or writing to system memory can yield performance
benefits. For example, it is possible to double performance
when applying several image processing filters (e.g. bayer-
pattern to RGB conversion, image warping, etc) on
captured video frames that will be further processed on the
CPU by reading from and writing to system memory.
Alternatively, the developer is also given access to a DMA
engine that can be used to asynchronously transfer data
across different memory systems when available.

CAL compute kernels can be developed using a variety
methods and languages, and includes an extensible
compiler interface for new compilers to be added by third
parties. Currently, CAL provides support for using HLSL
and GLSL, both of which are high level shading languages.
Additionally, an internally developed architecture-agnostic
assembly language is supported. Finally, the Brook [6]
streaming extension to the C-language are natively
supported.

DES and AES key search
The presented results are for current and ongoing research.
One example application of using AMD’s accelerated
computing API’s is performing DES and AES key searches.
On a single HD 2900 XT, we able to test keys at a rate of
approximately 40 Gbps. Note, this rate is approximately 70
times that of a single CPU. To perform a brute force search
on a single GPU an average of 255 keys would have to be
tested, which would take approximately 1.79 years. Using
a parallel cluster of 1000 GPUs, the same brute force search
could be performed in approximately 16 hours. With AES,
our current implementation tests keys at a rate of 21 Gbps.
One obvious extension is to use a directed attack instead of
simply performing a brute force search.

References
[1] ATI Research, Inc, The Radeon X1x00 Programming Guide,

www.ati.com, 2005.

[2] M. Segal and K. Akeley, The OpenGL Graphics System: A
Specification, Version 2.0. www.opengl.org, 2004.

[3] Microsoft, Inc, Direct3D Reference, msdn.microsoft.org,
2004.

[4] Nvidia, Inc, CUDA, www.nvidia.com, 2007.

[5] ATI Research, Inc, CTM Programming Guide,
research.ati.com, 2007.

[6] I. Buck, et al. “Brook for GPUs”. In Proceedings of
SIGGRAPH ’04 (2004), pp. 777-786

http://www.ati.com
http://www.ati.com
http://www.opengl.org
http://www.opengl.org
http://www.opengl.org
http://www.opengl.org
http://www.opengl.org
http://www.opengl.org

