
Copyright 2007 Lockheed Martin 
Corporation

1

Exploring Multi-core Processors using 
Realistic Signal- and Image-processing 

Application Benchmarks

Ray E. Artz, Brian J. Loe, Janet Pavelich
Lockheed Martin MS2 Tactical Systems
3333 Pilot Knob Road, Eagan, MN 55121

{ray.e.artz, brian.j.loe, janet.pavelich}@lmco.com

Jules Bergmann
CodeSourcery

9978 Granite Point Court, Granite Bay, CA 95746
jules@codesourcery.com

High Performance Embedded Computing (HPEC) 
Workshop

18-20 September 2007



Copyright 2007 Lockheed Martin 
Corporation

2

Presentation outline

• Overview
– Motivation, purpose, objectives, scope

• P.A. Semi PA6T-1682M PWRficientTM Processor
• Benchmarking laboratory environment

– Target, host, and software-development platforms
– Software development environments and vector libraries 

• Project activities to date (June-August 2007)
• Benchmarks – descriptions and results

– Performance and power
• Multi-core operation
• Software development practices and experiences 
• Wrap-up

– Looking forward



Copyright 2007 Lockheed Martin 
Corporation

3

0.00

0.50

1.00

1.50

2.00

2.50

3.00

2002 2004 2005 2006 2007

Clock
Power
Performance

Overview:  Motivation 
Multi-core, low-power: Why do we care?

• Typical DoD program experience in the past five years:
– Over multiple processor generations, processor clock went up 2.5x
– Processor performance went up 1.5x, but power went up 2.2x
– Unless the pattern changes, future performance growth will be limited by power 

and cooling considerations

New processor introduction
Library optimization

Losing steam!



Copyright 2007 Lockheed Martin 
Corporation

4

Overview: Project purpose
• Primary

– To gain knowledge of emerging multi-core processors with 
possible application in DoD high-performance embedded- 
computing platforms.  Processor issues include:

• Performance
• Power consumption
• Multi-core operation

• Secondary 
– To gain experience with various single- and multi-core 

software libraries and software-development environments 
for possible use in DoD programs. Software issues include:

• Portability
• Productivity
• Performance
• Multi-core operation



Copyright 2007 Lockheed Martin 
Corporation

5

Overview:  Project objectives and scope

• Near-term (results reported here)
– Use several realistic application-level benchmarks to 

study the performance of: 
• PWRficientTM PA6T-1682M dual-core processor

– Also, report on software-development practices and 
experiences related to building benchmarking 
software using:

• Mercury SAL and CodeSourcery VSIPL++

• Longer-term
– Use similar benchmarks to study:

• Full-production versions of the PA6T-1682M family 
• IBM Cell Broadband EngineTM (BE)
• Use of parallel vector libraries such as Mercury Multi- 

core Framework (MCF) and Parallel VSIPL++



Copyright 2007 Lockheed Martin 
Corporation

6

Overview:  Scope 
Why these two multi-core processors?

• IBM Cell Broadband EngineTM (BE) processor 
offers very high performance but also presents 
significant engineering challenges

– Demonstrates excellent performance per watt, 
especially on  kernel benchmarks, but 

– Is a very-high-power component (100 watts?)
– Portable and productive software development for 

the Cell BE is a challenge, though tools are emerging
• Semi PA6T-1682M processor also offers high 

performance, but without so many challenges
– Peak performance per component is far lower than 

that of the Cell BE, but
– Power consumption per component is much lower

• Easier to cool via conventional means
– Power ArchitectureTM (including AltiVecTM) 

instruction set and conventional programming 
models permit easy and direct ports of existing 
vector libraries and application software

Used with permission from P.A. Semi for HPEC 2007

Used with permission from Mercury Computer 
Systems  for HPEC 2007



Copyright 2007 Lockheed Martin 
Corporation

7

P.A. Semi PWRficientTM PA6T-1682M 

Used with permission from P.A. Semi for HPEC 2007

P.A. Semi, Inc. 
• Fabless processor company based 

in Santa Clara, CA
• Power ArchitectureTM Licensee
• Designer and producer of low- 

power multi-core processors
• Began shipping sample quantities 

and evaluation kits 4Q 2006
• Producing dual-core PA6T 1682M 

as first of a family of multi-core 
processors

• Per public press releases, 
committed to supplying PA6T 
components for inclusion in 
products by:

– Mercury Computer Systems
– Curtis Wright
– Extreme Engineering Solutions
– Themis 
– Others

PA6T-1682M Block diagram



Copyright 2007 Lockheed Martin 
Corporation

8

P.A. Semi PWRficientTM PA6T Core

Copyright P.A. Semi

Used with permission from P.A. Semi for HPEC 2007



Copyright 2007 Lockheed Martin 
Corporation

9

• Chart shows maximum-power measurements made by P.A. Semi using artificial “thermal- 
virus” software designed specifically to make maximum simultaneous use of all circuitry 

• Maximum power utilization observed in this benchmarking study was 11.9 watts total chip 
power with A.2 silicon, simultaneous 2-core operation (but no I/O) at 1.7 GHz

Used with permission from P.A. Semi for HPEC 2007

Max observed by 
benchmarking project

Thermal Virus 
Maximum (no I/O)

P.A. Semi PWRficientTM PA6T-1682M 
Measured maximum power at 100 deg C



Copyright 2007 Lockheed Martin 
Corporation

10

Benchmarking laboratory environment 
Target, host, and code-development platforms

• Target platform: P.A. Semi Electra evaluation kit (see next slide)
• Host platform: IA86/Linux Desktop computer networked to Target

– Sourcery G++ from CodeSourcery
• IDE for C++, based on Eclipse IDE and GNU toolchain 
• Cross-compiler for Power/Linux target, based on GNU G++

– Cross-compiled libraries for Power/Linux target 
• Mercury SAL (pre-release version)
• CodeSourcery VSIPL++ 1.3

• Development platforms: Dell Laptop computers w/ Windows NT
– Principal platforms for source code development and debug 
– Sourcery G++ from CodeSourcery

• IDE for C++, based on Eclipse IDE and GNU toolchain 
• Cross-compiler for Power/EABI target, based on GNU G++ 
• EABI Power-target simulator

– Cross-compiled libraries for Power/EABI target (simulated)
• Mercury CSAL
• CodeSourcery VSIPL++ 1.3



Copyright 2007 Lockheed Martin 
Corporation

11

Benchmarking laboratory environment 
Target platform

• P.A. Semi RDK Electra Board
– ATX form factor in standard PC chassis
– PA6T-1682M Processor

• A.2 silicon, 1.7 GHz 
– Four DIMM sockets, two populated 

• w/ 512MB DDR-2 DIMM’s 
– IDE port on board, drive installed by 

project team

• RDK Electra software
– Common Firmware Environment 

(CFE) boot monitor
– Board Support Package for Linux
– Linux Kernel

x16

x2

x4
x1
x1

SMBu 
s 2  

16 lane
P

C
I E

xpress
4 lane
P

C
I 

E
xpress/XA

U
I

Dual 
SGMII 
PHY

1 lane
P

C
I E

xpress 

32/33 P
C

I

PCIe/ 
PCI 

Bridg 
e

LPC Flash 8MB
(boot firmware)

Buffer 
s

IDE 0

IDE 1

Buffer 
s

Compact 
Flash 
Slot

Unbuffered or 
Registered 

1 or 2 ranks per DIMM

M 
C0

M 
C1

DIMM

DIMM

DIMM

DIMM

S
M

B
us

 0

RTC EEPR 
OM

Monito 
r

SMBu 
s 1  

RS2 
32RS2 
32

JTA 
G

SER 
DESDD 
R 2Loc 
al 
Bus

PWRficientPWRficient

Used with permission P.A. Semi for HPEC 2007



Copyright 2007 Lockheed Martin 
Corporation

12

Benchmarking laboratory environment 
SAL and VSIPL++ vector libraries

• Mercury Scientific Application Library (SAL)
– Mature C-language vector library
– Over 10 years sustained development
– Well-deserved reputation: “gold standard” for performance
– Project used a pre-release (not-yet-optimized) version of SAL for 

Power/Linux supplied by Mercury Computer Company
• Vector-, Signal-, and Image-processing Library (VSIPL++)

– Open standard, modern object-oriented C++ API
– Development sponsored by DoD
– Sourcery VSIPL++ by CodeSourcery is an optimized 

implementation of the standard
• Designed for portability, productivity, and performance 
• Employs multiple means to achieve performance

– Including linking to optimized libraries (e.g., SAL)
– Version of VSIPL++ used for benchmarking software: 

• CodeSourcery VSIPL++ 1.3 compiled for generic Power/LINUX 
architectures



Copyright 2007 Lockheed Martin 
Corporation

13

1. VSIPL++ API with “implicit” SAL
– SAL used by VSIPL++ 
– SAL not directly visible to the 

application
– Maximizes software portability

2.  Both VSIPL++ and SAL API’s 
visible to the application

• VSIPL++ used at the top-level 
for object-oriented design

• SAL used explicitly for selected 
computations

• Gives developer extra 
opportunities to directly 
optimize performance

Benchmarking laboratory environment 
SAL and VSIPL++ used in two configurations

OS, BSP, etc.

Hardware

VSIPL++
SAL

Application

OS, BSP, etc.

Hardware

VSIPL++
SAL

Application



Copyright 2007 Lockheed Martin 
Corporation

14

Project activities 
Busy June!

• Electra system arrived and hardware worked immediately
• Project had typical start-up with some “growing pains”

– Network installation, corporate internet firewalls, LINUX issues
– Project team’s first use of C++ and VSIPL++ 

• Then “With a Little (actually, lots of!) Help from Our Friends”:
– PA-Semi sends us a free hard-drive with pre-installed software
– We evaluate, then purchase, CodeSourcery G++ IDE for both Host 

and Development Platforms: this greatly facilitates SW development
– Mercury gives us permission to use pre-release SAL libraries on our 

PA-Semi target, plus Mercury CSAL for desktop use 
– CodeSourcery contributes VSIPL++ support – to the extent that 

Jules Bergmann joins our team as a co-author



Copyright 2007 Lockheed Martin 
Corporation

15

Project activities 
Busier July !!

• Stabilized benchmarking software environments
– Installed Sourcery G++ EABI simulator on development 

platforms for source-code operation, validation, and debug
– Installed and integrated VSIPL++ and SAL libraries on all three 

platforms:  development, host, and target
• CSAL was used on development host  

– Established near-seamless transition from development 
platform to target platforms

• Developed most of the benchmarking code
– Electro-optical benchmarking code almost completed
– Acoustic Beamformer benchmarking code started

• Started data collection



Copyright 2007 Lockheed Martin 
Corporation

16

Project activities 
Hazy, Crazy, but-not-Lazy Days of August!!!

• Added additional code instrumentation and collected data
• Checked data for anomalies, re-collected as necessary 
• Tuned and optimized (to the extent possible in 3 weeks)

– Application code and G++ compiler options (Thanks, Mercury 
and CodeSourcery!)

– VSIPL++ library (Thanks, CodeSourcery!)
– New PA6T Linux Kernel and PA6T run-time settings (Thanks, 

P.A. Semi!) 
• Regretted having so little time with so many untapped 

opportunities to improve performance further
– BUT:  knowing it leaves us lots to talk about at HPEC 2008

• Completed HPEC presentation material in time to clear 
corporate-release process and still meet 31 Aug deadline 

• WHEW!  But it’s great to be here!



Copyright 2007 Lockheed Martin 
Corporation

17

Benchmarks 
Kernel versus application-level

• Kernel benchmarks
– Give detailed information about how individual algorithms perform 

in isolation
• FFT’s, matrix multiplies, etc.

– Are widely reported in technical and marketing literature
– Are very valuable for performance prediction, but are easily misused
– Are often overly optimistic compared to actual performance

• Likely to reflect performance on the most highly-tuned, parallel code in a 
signal- or imaging-processing program

• Application-level benchmarks
– Can be too application-specific

• Extrapolation from one application to another can be problematical
– Nonetheless provide a valuable “sanity check” on kernel-benchmark 

results
• This study is focused on application-level benchmarks

– Some kernel results will be collected as time and resources permit



Copyright 2007 Lockheed Martin 
Corporation

18

Benchmarks 
Electro-optical (EO) application

• Electro-optical benchmarking software is similar to code 
used  in actual DoD applications, but: 
• Is organized for benchmarking convenience and data collection
• Uses VSIPL++ API at the top level for object-oriented design
• Can be run in either of two vector-library configurations (see 

Slide 13):
1. VSIPL++ API:  Only  VSIPL++ API visible to application 
2. VSIPL++/SAL API:  Both SAL and VSIPL++ API’s visible to 

application 
In either configuration, VSIPL++ is permitted to link to SAL 
automatically for performance

NOTE:  Because the benchmarking code closely resembles actual application 
code, and is based on Lockheed Martin Proprietary algorithms, this presentation 
will present only aggregate performance data for it, with no detailed breakdown 
or algorithmic detail.  



Copyright 2007 Lockheed Martin 
Corporation

19

Benchmarks 
Electro-optical (EO) application

CAMERA

ON

In typical application, multiple processors process 
successive image frames in “round-robin” mode

In benchmark, two 
cores operate 
continuously In actual application, 

processing speed 
determines the number 
of processors (or cores) 
needed to sustain the 
required frame-rate

ON ON ON ON ON

ON ON



Copyright 2007 Lockheed Martin 
Corporation

20

Benchmarks 
Electro-optical performance

Frames per Second

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

7447A 970FX 1682M
 975 MHz               2.0 GHz                 1.7 GHz

VSIPL++ API VSIPL++/SAL API

Raw performance Performance scaled to power
Based on “worst-case” power 

(excluding IO power) per vendor 
data sheets

Frames per Second per 10 Watts

0.0

2.0

4.0

6.0

8.0

10.0

12.0

7447A 970 FX 1682M
 975 MHz,  11.5 w       2.0 GHz, 60 w    1.7 GHz, 16 w

VSIPL++ VSIPL++/SAL API

Note: “Frames per second” as used here is based on 
an arbitrary benchmark and does not correspond to 
actual frame processing time in any real system



Copyright 2007 Lockheed Martin 
Corporation

21

Data Read 
FIR filter
Decimate

Calculate
Beam Directions
Steering Vectors

Preprocessing steps

Outer loop (Frames in time domain)

Inner loop (Frequencies)

Linear De-trend Blackman Shading

Calculate Weights Calculate Beams

FFT

16 Channels
Sample Rate = 44.1 kHz
Low Pass Filter
Decimate to 4.41 kHz

Benchmarks 
Acoustic beamformer application

• Benchmarked in 
VSIPL++ API mode only

• SAL not visible to 
application

• VSIPL++ linked to SAL 
for performance

Presenter
Presentation Notes
This doesn’t look anything like the slide I tried to put into the presentation!



Copyright 2007 Lockheed Martin 
Corporation

22

Benchmarks  
Acoustic beamformer performance

Raw performance Performance scaled to power 
Based on “worst-case” power (excluding 

IO power) per vendor data sheets

Note: “Loops per second” as used here is based on an 
arbitrary benchmark and does not correspond to cyclic 

processing time in any real system

Note: 7447A benchmark results not available 
in time for HPEC 2007 presentation 

Loops  per 10 secs

0.0

2.0

4.0

6.0

8.0

10.0

12.0

970 FX 1682M
2.0 GHz                              1.7 GHz

 Loops per 10 secs per 10 watts

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

970 FX 1682M

2.0 GHz, 60 watts               1.7 GHz, 16 watts



Copyright 2007 Lockheed Martin 
Corporation

23

Multi-core operation 
Dual-core performance

Q:  How does dual-core operation 
compare to one-core operation on 
the PA6T-1682M?

A:  We observed a full 2X 
improvement over 1-core operation

– Two copies of our most intensive 
benchmarking application ran on 
two cores at 1.7 GHz with no 
interference or extra overhead

– Application included significant 
VMX (AltiVecTM) use and significant 
main-memory utilization

Used with permission from P.A. Semi for 
HPEC 2007



Copyright 2007 Lockheed Martin 
Corporation

24

Multi-core operation 
Dual-core power management

Q: How is power consumption affected by 
dual-core operation?

A: Power consumption was “as advertised”
• Power-management also allowed the 

cores to drop to lower clock speeds (and 
much lower power consumption) when 
processing loads were removed

– Both cores operate at the same speed
– Core power consumption is largely 

determined by clock speed
• With clock forced to 1.7 GHz, we measured 

11.5 watts with no application running
• Drops to 3.6  watts at 400 Hz if permitted

– Our most intensive benchmarking 
application running full speed on both 
cores at 1.7 GHz never exceeded 11.9 watts

Used with permission from P.A. Semi for 
HPEC 2007



Copyright 2007 Lockheed Martin 
Corporation

25

Software productivity 
Use of Sourcery G++ IDE

• Eclipse-based IDE, GNU toolchain 
• Productive source-code development 

on desktop/laptop computers
• EABI simulator 

– application code to run and debugged 
on without leaving the IDE

– VSIPL++ and Mercury CSAL (C- 
language version of SAL) easily 
compiled for use with the simulator

• Ease-of-use significantly contributed 
to software development productivity

• G++ IDE on Host platform (networked to target platform)
– IDE supports interactive debugging on target processor (Electra w/ PA6T- 

1682M) without leaving IDE on host
– Transition from development platform target platform nearly “seamless”



Copyright 2007 Lockheed Martin 
Corporation

26

Software productivity 
Use of VSIPL++ and SAL

• Project team had no prior experience with VSIPL++ or C++, some 
experience with SAL, significant experience with C-language

• Two months to learn a new language and library and build code 
is a challenge 

– Support from CodeSourcery was invaluable
– One gripe:  VSIPL++ needs better documentation! 

• Objective results 
– Ported 1250 lines of unfamiliar C/SAL source code to 850 lines of 

working C++/VSIPL++ code in 4 programmer-weeks
• Use of VSIPL++ led to compact code

– In an additional 1.5 programmer-weeks, added 400 additional lines to 
permit program to be run in pure VSIPL++ API configuration or 
VSIPL++/SAL API configuration

– More than half of this additional code was routine “glue” to translate 
between VSIPL++ objects and C arrays which SAL could access 



Copyright 2007 Lockheed Martin 
Corporation

27

Software productivity 
Use of VSIPL++ and SAL:  Subjective comments

• VSIPL++ and object-oriented design contributed to productivity 
– Easy to read code – relatively few chances for error
– Hence greater productivity

• Productivity was enhanced by VSIPL++ 
– Syntax takes care of much of the vector-matrix “bookkeeping”
– Error-prone code (e.g., index management for subviews of matrices) is 

simplified 
• VSIPL++ and SAL jointly supported a productive approach to building 

high-performance code
– First, a clean design with correct operation
– Then optimization in selected areas (e.g., by insertion of SAL code) based 

on profiling information (in our case, from use of VSIPL++ Profiling API)
• Inserting SAL at lower levels was easy once design was in place

– Clean design was preserved
– Bookkeeping glue (managing index bounds, etc.) was easy to write



Copyright 2007 Lockheed Martin 
Corporation

28

Software portability 
Benchmarking the PA6T-1682M

• Software portability was excellent!
• Both VSIPL++ and SAL application code ported seamlessly 

from desktop (using CSAL) to PA6T-1682M Target
– Binary-compatible between IBM 970 FX and PA6T-1682M

• Both had Linux operating systems
• Code compiled for generic Power ArchitectureTM with VMX 
• Source-compatible (re-compilation req’d) with other targets 

– 7447A in Mercury PowerstreamTM system with MCOE operating 
environment

– Sourcery G++ EABI power-simulator environment on desktop 
without AltiVecTM instruction support 

• There was never a reason to run debugger on PA6T-1682M 
target!
– Once software ran correctly on desktop, it also always ran 

correctly on PA6T-1682M



Copyright 2007 Lockheed Martin 
Corporation

29

Software performance 
Including use of VSIPL++ and SAL

• Software performance on our benchmarks relied on no processor- 
specific optimizations

– There was no explicit control of caches
– Source-code optimization consisted only of changes to make effective use 

of VSIPL++ and SAL libraries
• Sourcery VSIPL++ uses many mechanisms to achieve portable 

performance
– An important one in the present context is linking to SAL

• We achieved best performance on benchmarks by explicit use of SAL 
in our applications

– Another mechanism used was to improve Sourcery VSIPL++ dispatching to 
make better use of SAL

– Project schedule did not permit taking this latter approach to its logical 
conclusion to minimize the performance gap between explicit (application 
level) and implicit (library linking) use of SAL

– Purpose of such an approach would be to maximize portability with 
minimal sacrifice of performance  



Copyright 2007 Lockheed Martin 
Corporation

30

Wrap-up: Conservative prediction 
Based on already-demonstrated performance

• Recall the disappointing graph on Slide 3
• Here is a VERY CONSERVATIVE projection based on already- 

demonstrated performance, BUT (see next slide)…

0.00

1.00

2.00

3.00

4.00

5.00

6.00

2002 2004 2005 2006 2007 2008

Clock
Power
Performance

Losing steam?

Just getting started!

Total power and 
combined performance 
for two cores



Copyright 2007 Lockheed Martin 
Corporation

31

Wrap-up: The best is yet to come 
We’ve barely scratched the surface!

• With:
– PA6T-1682M production silicon coming soon 

• Testing was on A.2 pre-production silicon
– Mercury SAL libraries ready to be optimized for PA6T

• Testing was done using un-optimized libraries 
– Sourcery VSIPL++ continuing to be improved 

• Significant additional performance improvements by this time 
next year are: 

– Not just likely, but
– Near-certain

• We expect to see at least a factor of 1.3x to 1.5x additional 
improvement 

Anyone want to place bets?
See you at HPEC 2008!



Copyright 2007 Lockheed Martin 
Corporation

32

• This presentation is based on ongoing Independent Research and 
Development (IRAD) being conducted by Lockheed Martin 
Corporation

• This presentation was prepared by Lockheed Martin MS2 Tactical 
Systems (Eagan) with contributions from:

– Other Lockheed Martin organizations 
• We gratefully acknowledge significant contributions, including 

presentation co-authorship, from:
– CodeSourcery, Inc. 

• We also gratefully acknowledge significant technical assistance 
(but no responsibility for presentation content) from:

– Mercury Computer Systems, Inc. 
– P.A. Semi, Inc. 

Exploring Multi-core Processors using Realistic 
Signal- and Image-processing Application 

Benchmarks 
-Acknowledgements-


	Exploring Multi-core Processors using Realistic Signal- and Image-processing Application Benchmarks
	Presentation outline
	Overview:  Motivation�Multi-core, low-power: Why do we care?
	Overview:  Project purpose
	Overview:  Project objectives and scope
	Overview:  Scope �Why these two multi-core processors?
	P.A. Semi PWRficientTM PA6T-1682M 
	P.A. Semi PWRficientTM PA6T Core
	P.A. Semi PWRficientTM PA6T-1682M Measured maximum power at 100 deg C
	Benchmarking laboratory environment�Target, host, and code-development platforms
	Benchmarking laboratory environment  �Target platform
	Benchmarking laboratory environment�SAL and VSIPL++ vector libraries
	Benchmarking laboratory environment� SAL and VSIPL++ used in two configurations
	Project activities�Busy June!
	Project activities�Busier July !!
	Project activities �Hazy, Crazy, but-not-Lazy Days of August!!!
	Benchmarks�Kernel versus application-level
	Benchmarks� Electro-optical (EO) application
	Benchmarks�Electro-optical (EO) application
	Benchmarks�Electro-optical performance
	Slide Number 21
	Benchmarks  �Acoustic beamformer performance
	Multi-core operation�Dual-core performance
	Multi-core operation�Dual-core power management
	Software productivity�Use of Sourcery G++ IDE 
	Software productivity�Use of VSIPL++ and SAL
	Software productivity�Use of VSIPL++ and SAL:  Subjective comments
	Software portability�Benchmarking the PA6T-1682M
	Software performance�Including use of VSIPL++ and SAL
	Wrap-up: Conservative prediction�Based on already-demonstrated performance
	Wrap-up: The best is yet to come�We’ve barely scratched the surface!
	Exploring Multi-core Processors using Realistic Signal- and Image-processing Application Benchmarks�-Acknowledgements-

