
20 September 2007

ApplicationApplication--level Benchmarking level Benchmarking
with Synthetic Aperture Radarwith Synthetic Aperture Radar

Chris Conger, Adam Jacobs,
and Alan D. George

HCS Research Laboratory
College of Engineering

University of Florida

20 September 2007 2

Outline

I. Introduction & Motivation
II. SAR Algorithm Overview

I. Basic application
II. Parallel decompositions

III. Summary of Benchmark Features
IV. Benchmark Results

I. Experimental setup
II. Performance results
III. Visualization and error

V. Conclusions

20 September 2007 3

Introduction & Motivation

New Synthetic Aperture Radar (SAR)
application-level benchmark

Strip-map mode SAR
Sequential, multiple parallel implementations
Written in ANSI-C, using GSL* and MPI * *

Based on original SAR code provided by
Scripps Institution of Oceanography
Why did we “re-invent the wheel?”

Multiple parallelizations, unique features
Simple code structure, easy to modify

Code originally intended for internal use,
decided to share with community

Image courtesy [1]

[1] http://www.noaanews.noaa.gov/stories2005/s2432.htm
* GSL = Gnu Scientific Library
** MPI = Message Passing Interface

http://www.noaanews.noaa.gov/stories2005/s2432.htm

20 September 2007 4

SAR Algorithm Overview
SAR produces high-resolution images
of Earth’s surface from air or space,
using downward-facing radar
This benchmark implements strip-map
mode SAR, composed of four stages
Data is complex 2-D image,
must be transposed between each stage

Range dimension: distance from radar
Azimuth dimension: different radar pulses/pulse returns

z

x y

H

radar

azimuth range

ground range

swath

20 September 2007 5

SAR Algorithm Overview
Sequential, baseline implementation (S1)

Entire raw image is processed in patches, with overlapping boundaries
Each patch can be processed completely independently of other patches
Portion of each fully-processed patch is kept, appended together seamlessly

Patch size is variable along azimuth dimension
Smaller means lower memory and computational requirements per patch,
however more repeated calculations across different patches
Larger means higher memory and computational requirements per patch,
however less repeated calculations across different patches

Read one patch from file, process, and write to output file… repeat

20 September 2007 6

SAR Algorithm Overview
Parallelization #1 (P1) – Distributed Patches

Master-worker partitioning of N nodes, one master and N-1 workers
Master node responsible for file I/O, sending and receiving patches
Worker nodes wait to receive data from master, perform actual SAR processing

One patch per worker node, two different data distribution strategies
P1-A: first parallelization, sends to all workers, receives from all workers, repeat
P1-B: optimized data distribution (shown below), workers receive new patch immediately

Maximum number of workers is bounded by number of patches in full image
No distributed transposes needed for this parallelization
Ideally, full image processing latency reduces to single-patch processing latency

20 September 2007 7

SAR Algorithm Overview
Parallelization #2 (P2) – Distributed Parallel Patches

Master-worker partitioning of N nodes, one master and N-1 workers
Master node responsible for file I/O, sending and receiving patches
Worker nodes wait to receive data from master, perform actual SAR processing

Worker nodes separated into G groups of nodes, one patch per group
When G = 1, this reduces to a system-wide, data-parallel decomposition
When 1 < G < (N – 1), this becomes a hybrid data-parallel/distributed-patch decomposition
When G = (N - 1), this reduces to P1 parallelization

No inherent upper bound on number of nodes that can be used
Distributed transposes necessary within each group of nodes

Node 0

Group A

Group B

20 September 2007 8

Summary of Benchmark Features

Selectable precision, single- or double-precision floating point
Adjustable image sizes, radar parameters
Adjustable memory usage

Artificially limit amount of memory available to SAR application
Determines patch size used for processing full image

Data and bitmap generation tools
Input data generator for arbitrary-sized input files (random data)
Bitmap file generator to convert benchmark output to viewable file

Modular code structure
Can replace GSL with other math library, by editing one source file
Written to read and process raw SAR files from ERS-2 satellite,
can be easily modified to interpret other file formats

Sample ERS-2 image provided† with benchmark source code
Documentation!!

† image can be downloaded from public website, http://topex.ucsd.edu/insar/e2_10001_2925.raw.gz
(last accessed 08/25/2007)

http://topex.ucsd.edu/insar/e2_10001_2925.raw.gz

20 September 2007 9

Benchmark Results – Experimental Setup
As an example, benchmark was run on 10-node cluster of Linux
servers, connected via GigE switch; each node contains:

1.42 GHz PowerPC G4 processor
1 GB of PC2700 memory (333 MHz)
Gigabit Ethernet NICs
120 GB hard drive

One server reserved for disk I/O
and majority of network I/O
Full image dimensions:

Range dimension size: 5,616 pixels
Azimuth dimension size: 27,900 pixels

Ideally, process entire image in < 16 sec

20 September 2007 10

Benchmark Results – Sequential Baseline (S1)
Two valid patch sizes considered:

Using 5616×4096-pixel patches, entire image
can be processed in 9 patches
Using 5616×2048-pixel patches, entire image
can be processed in 35 patches
Each pixel represented by complex element

Notation in figures:
S-9 single precision, 9 patches
S-35 single precision, 35 patches
D-9 double precision, 9 patches
D-35 double precision, 35 patches

Slower to process full image with
smaller patches, however faster per-
patch with smaller patches
Figure to lower-right shows percentage
of overall latency for each stage

Transposition of patches included in azimuth-
processing stage latencies
Azimuth compression takes longer with single-
precision floating point?
Per-stage contribution depends on precision,
but not so much on number of patches

0%

10%
20%

30%

40%

50%
60%

70%

80%

90%
100%

S-9 D-9 S-35 D-35

Precision-Patches

Execution Time Breakdown

Azimuth Compression

Range Migration

Azimuth Transform

Range Compression

File I/O

Full Image Execution Time

0

200
400

600

800

1000
1200

1400

1600

S-9 D-9 S-35 D-35

Precision-Patches

Ex
ec

. T
im

e
(s

ec
)

Avg. Per-Patch Execution Time

0.0

10.0
20.0

30.0

40.0

50.0
60.0

70.0

80.0

S-9 D-9 S-35 D-35

Precision-Patches

Ex
ec

. T
im

e
(s

ec
)

20 September 2007 11

Benchmark Results – Distributed Patches (P1)
Recall two different data distribution strategies,
P1-A and P1-B
Same two patch sizes as in S1 results

Smaller patches may provide better scalability, but net
performance is consistently worse
Entire range of possible nodes shown for 9-patch case
For 35-patch case, could use up to 35 worker nodes
(red curves extend beyond what is shown, blue do not)

Too many restrictions result from this coarse-
grained parallelization

Max number of nodes capped
Best possible latency same as single-patch latency
(~42 sec for 35 patches, ~69 sec for 9 patches)
May never be able to achieve desired performance!

“ideal” based on number of worker nodes,
not total number of nodes

single-precision only on this slide

P1 Execution Time, 9 Patches

0
100
200
300
400
500
600
700
800

Seq 1 2 3 4 5 6 7 8 9
Worker Nodes

Ex
ec

. T
im

e
(s

ec
)

P1-A

P1-B

P1 Execution Time, 35 Patches

0
200
400
600
800

1000
1200
1400
1600

Seq 1 2 3 4 5 6 7 8 9
Worker Nodes

Ex
ec

. T
im

e
(s

ec
)

P1-A

P1-B

Speedup

0.0
1.0

2.0
3.0

4.0
5.0

6.0
7.0

8.0
9.0

1 2 3 4 5 6 7 8 9

Worker Nodes

Sp
ee

du
p

9 patches, P1-A
9 patches, P1-B
35 patches, P1-A
35 patches, P1-B
ideal

20 September 2007 12

Benchmark Results – Distributed Parallel Patches (P2)
For this system, P2 parallelization below shows no improvement over P1

Why? P2 features multi-level parallelism, but this cluster only a single-level architecture
In all cases, performance penalty of distributed transposes within groups overpowers
performance improvement of data-parallel processing in each stage
Cost of all-to-all communications of corner turns over Gigabit Ethernet is prohibitive
Systems of multiprocessor nodes or multicore devices much better targets for P2 method

Using more nodes would provide better visibility into true performance limits
For this parallelization, both dimensions of a patch must be divisible by number
of nodes in a group (restricts valid system sizes)

1,464 sec sequential 660 sec sequential
P2 Execution Time, 35 Patches

0
200
400
600
800

1000
1200
1400

2 4 6 8

Worker Nodes in System

E
xe

c.
 T

im
e

(s
ec

)

1 group

2 groups

3 groups

4 groups

6 groups

8 groups

P2 Execution Time, 9 Patches

0

100

200

300

400

500

600

2 4 6 8

Worker Nodes in System

Ex
ec

. T
im

e
(s

ec
)

1 group

2 groups

3 groups

4 groups

6 groups

8 groups

single-precision only on this slide

20 September 2007 13

Benchmark Results – Distributed Transposes
Distributed transpose also called corner turn (CT)
Third, larger patch size included, 5616 x 8192

For provided example image, not valid patch size (too large)
Included only for CT study, for wider range of patch sizes
In real-time system, or with larger images, would be valid option

CT latency per patch is smaller for small patches,
however many more patches per image as well

Values in bottom-most table calculated assuming a single
group of N worker nodes must do all patches sequentially
Recall, multiple groups can operate concurrently

Large values explain inability for P2 parallelization to
provide better performance on this platform

TOTAL TIME SPENT ON CORNER TURNS FOR FULL IMAGE (sec)

corner turns 2 workers 4 workers 6 workers 8 workers

SIZE 1 140 350 315 295.4 278.6

SIZE 2 36 195.84 168.48 156.6 150.48

TOTAL TIME SPENT ON CORNER TURNS PER PATCH (sec)

corner turns 2 workers 4 workers 6 workers 8 workers

SIZE 1 4 10 9 8.44 7.96

SIZE 2 4 21.76 18.72 17.4 16.72

SIZE 3 4 51.8 40.88 36.36 34.64

SIZE 1 – 5616 x 2048, 35 patches
SIZE 2 – 5616 x 4096, 9 patches
SIZE 3 – 5616 x 8192, 3 patches

2
4

6
8

SIZE 1

SIZE 2

SIZE 3
0

10

20

30

40

50

60

Ex
ec

. T
im

e
(s

ec
)

Worker Nodes

Time Spent on Corner Turns Per Patch

50-60
40-50
30-40
20-30
10-20
0-10

Corner Turn Execution Time

0

2

4

6

8

10

12

14

2 4 6 8
Worker Nodes

Ex
ec

. T
im

e
(s

ec
)

SIZE 1

SIZE 2

SIZE 3

20 September 2007 14

Image to right shows actual
benchmark output bitmap
Bitmap generation utility

Converts to 8-bit grayscale,
automatically adjusts contrast
Intentionally kept separate from
timed benchmark

Not considered part of “critical”
processing chain
Can be reserved for ground
processing

Additional manipulations
Image is vertically stretched, must
be “squashed”
Colors inverted for aesthetics

Perhaps final image formation
should be part of main program

Benchmark Results – Visualization and Error

20 September 2007 15

Benchmark Results – Visualization and Error
Range of values in output:

Maximum: 0.02979
Minimum: 0.00000

Error between outputs produced
using single-/double-precision

Maximum pixel error: 3.314E-6
Minimum pixel error: 0.000
Mean-squared error: < 1.0E-9

Original input file contains 5-bit
fixed-point data, more bits would
result in more error in output
No visible differences between
single-/double-precision images
Single-precision data means:

Only half as much data to move around
the system
Lower processing latency from single-
precision FP operations

2.0E-9 7.5E-8

20 September 2007 16

Benchmark Results – Benchmark Materials Delivered

Source code and documentation provided together, but
separate from example ERS-2 input file
Source code package includes all three SAR implementations

Sequential baseline (S1)

Both parallelizations, (P1) and (P2)

Documentation which covers:
Mathematics of this SAR implementation

Code structure description and diagrams

Instructions on how to compile and run the benchmark

Pointers to other related reference material

GSL or MPI libraries not delivered with benchmark material…
user’s responsibility to ensure proper libraries are installed

20 September 2007 17

Conclusions (1)
Developed malleable code-base for strip-map mode of SAR, sharing with
community to freely use for benchmarking or other case studies
As provided, code is not optimized for any particular platform… lots of
room for improving performance on specific targets

Replace GSL as math library with something optimized for target architecture
Optimize distributed transpose algorithm for P2
Overlap file accesses and network communication at master node
Use more than one node to perform file access and/or distribution of data

Multi-level parallelism exploited through P2 does not map favorably to
non-hierarchical system topologies (e.g. basic star)

P2 better fit for multi-level parallel system architectures (e.g. clusters of SMPs/MCs)
Balance number of workers per group with localized processing resources

Based on observed performance of P1 and P2, a pipelined parallelization
seems like it would most easily support real-time SAR

Unless highly-optimized distributed transposes provide vast improvements in
performance, may simply be too much data for data-parallel decompositions
Having better mapping between target system architecture and P2 parallelization
could also significantly improve application performance

20 September 2007 18

Conclusions (2)
Intended uses of this benchmark:

Measurement and comparison of system performance
Realistic code-base for arbitrary research case studies
Professors could use this code for class projects
(parallel computing, radar theory, etc…)

Other application-level benchmarks in development:
Ground-Moving Target Indicator (GMTI)
Pixel classification with Hyper-Spectral Imaging (HSI)
Searching for more ideas

Potential future VSIPL++ implementation and comparison with
ANSI-C/MPI/GSL baseline

To download source code and documentation:
http://www.hcs.ufl.edu/~conger/sar.tgz

To download example input file from ERS-2 satellite:
http://topex.ucsd.edu/insar/e2_10001_2925.raw.gz

http://www.hcs.ufl.edu/~conger/sar.tgz
http://topex.ucsd.edu/insar/e2_10001_2925.raw.gz

20 September 2007 19

Acknowledgements

We would like to thank Dr. David T. Sandwell of Scripps
Institution of Oceanography for the generous donation of
sequential SAR code that served as the basis for the
implementations included in this benchmark

We also extend thanks to Honeywell – Space Electronics
Systems in Clearwater, FL for their support of this research

To download source code and documentation:
http://www.hcs.ufl.edu/~conger/sar.tgz

To download example input file from ERS-2 satellite:
http://topex.ucsd.edu/insar/e2_10001_2925.raw.gz

http://www.hcs.ufl.edu/~conger/sar.tgz
http://topex.ucsd.edu/insar/e2_10001_2925.raw.gz

	Application-level Benchmarking with Synthetic Aperture Radar
	Outline
	Introduction & Motivation
	SAR Algorithm Overview
	SAR Algorithm Overview
	SAR Algorithm Overview
	SAR Algorithm Overview
	Summary of Benchmark Features
	Benchmark Results – Experimental Setup
	Benchmark Results – Sequential Baseline (S1)
	Benchmark Results – Distributed Patches (P1)
	Benchmark Results – Distributed Parallel Patches (P2)
	Benchmark Results – Distributed Transposes
	Benchmark Results – Visualization and Error
	Benchmark Results – Visualization and Error
	Benchmark Results – Benchmark Materials Delivered
	Conclusions (1)
	Conclusions (2)
	Acknowledgements

