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Introduction & Motivation

New Synthetic Aperture Radar (SAR) 
application-level benchmark

Strip-map mode SAR
Sequential, multiple parallel implementations
Written in ANSI-C, using GSL* and MPI * *

Based on original SAR code provided by 
Scripps Institution of Oceanography
Why did we “re-invent the wheel?”

Multiple parallelizations, unique features
Simple code structure, easy to modify

Code originally intended for internal use,          
decided to share with community

Image courtesy [1]

[1]   http://www.noaanews.noaa.gov/stories2005/s2432.htm
* GSL = Gnu Scientific Library
** MPI  = Message Passing Interface

http://www.noaanews.noaa.gov/stories2005/s2432.htm
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SAR Algorithm Overview
SAR produces high-resolution images
of Earth’s surface from air or space, 
using downward-facing radar
This benchmark implements strip-map 
mode SAR, composed of four stages
Data is complex 2-D image, 
must be transposed between each stage

Range dimension: distance from radar
Azimuth dimension: different radar pulses/pulse returns
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SAR Algorithm Overview
Sequential, baseline implementation (S1)

Entire raw image is processed in patches, with overlapping boundaries
Each patch can be processed completely independently of other patches
Portion of each fully-processed patch is kept, appended together seamlessly

Patch size is variable along azimuth dimension
Smaller means lower memory and computational requirements per patch, 
however more repeated calculations across different patches
Larger means higher memory and computational requirements per patch, 
however less repeated calculations across different patches

Read one patch from file, process, and write to output file… repeat
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SAR Algorithm Overview
Parallelization #1 (P1) – Distributed Patches

Master-worker partitioning of N nodes, one master and N-1 workers
Master node responsible for file I/O, sending and receiving patches
Worker nodes wait to receive data from master, perform actual SAR processing

One patch per worker node, two different data distribution strategies
P1-A:  first parallelization, sends to all workers, receives from all workers, repeat
P1-B:  optimized data distribution (shown below), workers receive new patch immediately

Maximum number of workers is bounded by number of patches in full image
No distributed transposes needed for this parallelization
Ideally, full image processing latency reduces to single-patch processing latency
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SAR Algorithm Overview
Parallelization #2 (P2) – Distributed Parallel Patches

Master-worker partitioning of N nodes, one master and N-1 workers
Master node responsible for file I/O, sending and receiving patches
Worker nodes wait to receive data from master, perform actual SAR processing

Worker nodes separated into G groups of nodes, one patch per group
When G = 1, this reduces to a system-wide, data-parallel decomposition
When 1 < G < (N – 1), this becomes a hybrid data-parallel/distributed-patch decomposition
When G = (N - 1), this reduces to P1 parallelization

No inherent upper bound on number of nodes that can be used
Distributed transposes necessary within each group of nodes

Node 0

Group A

Group B
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Summary of Benchmark Features

Selectable precision, single- or double-precision floating point
Adjustable image sizes, radar parameters
Adjustable memory usage

Artificially limit amount of memory available to SAR application
Determines patch size used for processing full image 

Data and bitmap generation tools
Input data generator for arbitrary-sized input files (random data)
Bitmap file generator to convert benchmark output to viewable file

Modular code structure
Can replace GSL with other math library, by editing one source file
Written to read and process raw SAR files from ERS-2 satellite, 
can be easily modified to interpret other file formats

Sample ERS-2 image provided† with benchmark source code
Documentation!!

† image can be downloaded from public website, http://topex.ucsd.edu/insar/e2_10001_2925.raw.gz
(last accessed 08/25/2007)

http://topex.ucsd.edu/insar/e2_10001_2925.raw.gz
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Benchmark Results – Experimental Setup
As an example, benchmark was run on 10-node cluster of Linux 
servers, connected via GigE switch;  each node contains:

1.42 GHz PowerPC G4 processor
1 GB of PC2700 memory (333 MHz)
Gigabit Ethernet NICs
120 GB hard drive

One server reserved for disk I/O
and majority of network I/O
Full image dimensions:

Range dimension size: 5,616 pixels
Azimuth dimension size: 27,900 pixels

Ideally, process entire image in < 16 sec
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Benchmark Results – Sequential Baseline (S1)
Two valid patch sizes considered:

Using 5616×4096-pixel patches, entire image 
can be processed in 9 patches
Using 5616×2048-pixel patches, entire image 
can be processed in 35 patches
Each pixel represented by complex element

Notation in figures:
S-9 single precision, 9 patches
S-35 single precision, 35 patches
D-9 double precision, 9 patches
D-35 double precision, 35 patches

Slower to process full image with 
smaller patches, however faster per-
patch with smaller patches
Figure to lower-right shows percentage 
of overall latency for each stage

Transposition of patches included in azimuth-
processing stage latencies
Azimuth compression takes longer with single-
precision floating point?
Per-stage contribution depends on precision, 
but not so much on number of patches
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Benchmark Results – Distributed Patches (P1)
Recall two different data distribution strategies, 
P1-A and P1-B
Same two patch sizes as in S1 results

Smaller patches may provide better scalability, but net 
performance is consistently worse
Entire range of possible nodes shown for 9-patch case
For 35-patch case, could use up to 35 worker nodes 
(red curves extend beyond what is shown, blue do not)

Too many restrictions result from this coarse-
grained parallelization

Max number of nodes capped
Best possible latency same as single-patch latency  
(~42 sec for 35 patches, ~69 sec for 9 patches)
May never be able to achieve desired performance!

“ideal” based on number of worker nodes,                        
not total number of nodes

single-precision only on this slide
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Benchmark Results – Distributed Parallel Patches (P2)
For this system, P2 parallelization below shows no improvement over P1

Why?  P2 features multi-level parallelism, but this cluster only a single-level architecture
In all cases, performance penalty of distributed transposes within groups overpowers 
performance improvement of data-parallel processing in each stage
Cost of all-to-all communications of corner turns over Gigabit Ethernet is prohibitive
Systems of multiprocessor nodes or multicore devices much better targets for P2 method

Using more nodes would provide better visibility into true performance limits
For this parallelization, both dimensions of a patch must be divisible by number 
of nodes in a group (restricts valid system sizes)

1,464 sec sequential 660 sec sequential
P2 Execution Time, 35 Patches
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Benchmark Results – Distributed Transposes
Distributed transpose also called corner turn (CT)
Third, larger patch size included, 5616 x 8192

For provided example image, not valid patch size (too large)
Included only for CT study, for wider range of patch sizes
In real-time system, or with larger images, would be valid option

CT latency per patch is smaller for small patches, 
however many more patches per image as well

Values in bottom-most table calculated assuming a single 
group of N worker nodes must do all patches sequentially
Recall, multiple groups can operate concurrently

Large values explain inability for P2 parallelization to 
provide better performance on this platform

TOTAL TIME SPENT ON CORNER TURNS FOR FULL IMAGE (sec)

# corner turns 2 workers 4 workers 6 workers 8 workers

SIZE 1 140 350 315 295.4 278.6

SIZE 2 36 195.84 168.48 156.6 150.48

TOTAL TIME SPENT ON CORNER TURNS PER PATCH (sec)

# corner turns 2 workers 4 workers 6 workers 8 workers

SIZE 1 4 10 9 8.44 7.96

SIZE 2 4 21.76 18.72 17.4 16.72

SIZE 3 4 51.8 40.88 36.36 34.64

SIZE 1 – 5616 x 2048, 35 patches
SIZE 2 – 5616 x 4096, 9 patches
SIZE 3 – 5616 x 8192, 3 patches
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Image to right shows actual 
benchmark output bitmap
Bitmap generation utility

Converts to 8-bit grayscale, 
automatically adjusts contrast
Intentionally kept separate from 
timed benchmark

Not considered part of “critical”
processing chain
Can be reserved for ground 
processing

Additional manipulations
Image is vertically stretched, must 
be “squashed”
Colors inverted for aesthetics

Perhaps final image formation 
should be part of main program

Benchmark Results – Visualization and Error
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Benchmark Results – Visualization and Error
Range of values in output:

Maximum: 0.02979
Minimum: 0.00000

Error between outputs produced 
using single-/double-precision

Maximum pixel error: 3.314E-6
Minimum pixel error: 0.000
Mean-squared error: < 1.0E-9

Original input file contains 5-bit 
fixed-point data, more bits would 
result in more error in output
No visible differences between 
single-/double-precision images
Single-precision data means:

Only half as much data to move around 
the system
Lower processing latency from single-
precision FP operations

2.0E-9 7.5E-8
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Benchmark Results – Benchmark Materials Delivered

Source code and documentation provided together, but 
separate from example ERS-2 input file
Source code package includes all three SAR implementations

Sequential baseline (S1)

Both parallelizations, (P1) and (P2)

Documentation which covers:
Mathematics of this SAR implementation

Code structure description and diagrams

Instructions on how to compile and run the benchmark

Pointers to other related reference material

GSL or MPI libraries not delivered with benchmark material…
user’s responsibility to ensure proper libraries are installed
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Conclusions (1)
Developed malleable code-base for strip-map mode of SAR, sharing with 
community to freely use for benchmarking or other case studies
As provided, code is not optimized for any particular platform… lots of 
room for improving performance on specific targets

Replace GSL as math library with something optimized for target architecture
Optimize distributed transpose algorithm for P2
Overlap file accesses and network communication at master node
Use more than one node to perform file access and/or distribution of data

Multi-level parallelism exploited through P2 does not map favorably to 
non-hierarchical system topologies (e.g. basic star)

P2 better fit for multi-level parallel system architectures (e.g. clusters of SMPs/MCs)
Balance number of workers per group with localized processing resources

Based on observed performance of P1 and P2, a pipelined parallelization 
seems like it would most easily support real-time SAR

Unless highly-optimized distributed transposes provide vast improvements in 
performance, may simply be too much data for data-parallel decompositions
Having better mapping between target system architecture and P2 parallelization 
could also significantly improve application performance
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Conclusions (2)
Intended uses of this benchmark:

Measurement and comparison of system performance
Realistic code-base for arbitrary research case studies
Professors could use this code for class projects 
(parallel computing, radar theory, etc…)

Other application-level benchmarks in development:
Ground-Moving Target Indicator (GMTI)
Pixel classification with Hyper-Spectral Imaging (HSI)
Searching for more ideas

Potential future VSIPL++ implementation and comparison with    
ANSI-C/MPI/GSL baseline

To download source code and documentation:
http://www.hcs.ufl.edu/~conger/sar.tgz

To download example input file from ERS-2 satellite:
http://topex.ucsd.edu/insar/e2_10001_2925.raw.gz

http://www.hcs.ufl.edu/~conger/sar.tgz
http://topex.ucsd.edu/insar/e2_10001_2925.raw.gz
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