
Programming Examples that Expose Efficiency Issues for the Cell
Broadband Engine Architecture

William Lundgren1 (wlundgren@gedae.com), Rick Pancoast2 (rick.pancoast@lmco.com), David Erb3 (djerb@us.ibm.com),
Kerry Barnes1 (kbarnes@gedae.com), James Steed1 (jsteed@gedae.com)

1: Gedae, Inc., 1247 N. Church St., Suite 5, Moorestown, NJ 08057
2: Lockheed Martin, 199 Borton Landing Rd., Moorestown, NJ 08057 (Pending Corporate Approval)

3: IBM, 11501 Burnet Rd., Austin, TX 78758 (Pending Corporate Approval)

Introduction
The Cell Broadband Engine™ Architecture was developed
as a collaboration between Sony, Toshiba, and IBM. The
current implementation of the Cell Broadband Engine
(Cell/B.E.) processor combines one Power Processing
Element (PPE) with 8 identical Synergistic Processing
Elements (SPE). The PPE is a dual-threaded PowerPC core
with an instruction set that has been extended to include
SIMD (Single-Instruction, Multiple-Data) instructions
known as VMX. Each SPE contains a high-speed SIMD
processor with its own 256 kB local store and DMA engine.
The nine cores and the on-chip memory controller and I/O
controller are interconnected with the high speed Element
Interconnect Bus (EIB) as shown in Figure 1. The EIB
provides a measured peak bandwidth of over 200 GB/s at
3.2 GHz.
.

Figure 1 – The current Cell/B.E. Processor combines a PPE
core with 8 SPE cores, all interconnected via a high-speed bus.

Because the PPE provides relatively modest performance,
the key to using the Cell/B.E. processor efficiently is to take
best advantage of the SPEs. While an SPE can process
vector arithmetic very efficiently, each SPE has only
256KB of dedicated local storage which holds both
instructions and data. Thus when processing a large data
set, the developer must either distribute the large data set
across the processing cores or store the data in off-chip
system memory. For instance, an entire 1k-by-1k complex
matrix cannot reside in the SPE local storage, even if the
program size is zero. Therefore large data sets will initially
reside in system memory, and then the developer will

stripmine the data, bringing it chunk-by-chunk to the SPE
local storage for processing.

This paper will study how these programming
considerations affect the implementation of the synthetic
aperture radar (SAR) algorithm. We will study the
performance improvement possible by distributing the work
to the Cell/B.E. processor’s cores, as well as the issues that
must be resolved to create that distribution. Additionally
we will study a distributed FFT where the data for each
vector is distributed across the SPEs. The Gedae
programming language and development tools will be used
to conduct these experiments on the Cell/B.E. Architecture
and analyze the performance.

Distributed SAR Algorithm
To study the practicality and performance of real-world
applications on the Cell/B.E. processor, we will port a SAR
algorithm to the PPE and SPEs. The SAR algorithm has
two key stages: the range processing of the rows of the
matrix, and the azimuth processing of the columns of the
matrix. To distribute the SAR algorithm we must add three
stages: the partitioning of the data to distribute the rows
across the processors, a corner turn of the data (distributed
matrix transpose) to transition between range and azimuth
processing, and the concatenation of the column-based
results. In real-world applications, we must also do
additional preprocessing to unpack the data, remove the
possibility of phase errors, and additional error reduction.
With these added processing requirements due to the
distribution, the distributed SAR algorithm is as shown in
Figure 2.

C
or

ne
r T

ur
n

Figure 2 - Stages of the distributed SAR algorithm.

A key issue in implementing this distributed SAR algorithm
efficiently on this architecture is the implementation of the
corner turn. While the EIB provides a high bandwidth
between the SPEs for corner turn operations, the data sets
typical for a SAR algorithm cannot fit in the local storage
of the SPEs. To do the work of a corner turn on a large
SAR data set, the results of the range operation must be
transferred to system memory, and then – once full columns

Pr
ep

ro
ce

ss

Pa
rt

iti
on

A
zi

m
ut

h

R
an

ge

C
on

ca
te

na
te

mailto:wlundgren@gedae.com
mailto:rick.pancoast@lmco.com
mailto:djerb@us.ibm.com
mailto:kbarnes@gedae.com
mailto:jsteed@gedae.com

are available – transferred back to the SPEs in transposition.
Because this approach places demands on the bandwidth
between the SPEs and system memory as opposed to the
relatively fast bandwidth between SPEs, there is a concern
that the transpose can dominate the time of the algorithm.

A second issue in implementing this algorithm on the this
architecture is maximizing the number of vectors that are
computed together on the SPE’s. The SPE’s can perform
vector processing with amazing efficiency, so the developer
must maximize the size of these vectors to gain as much
performance benefit as possible. As the SPE’s local storage
must be used as both program memory and data memory,
its size is a limiting factor. Program overhead must be
minimized and unused code must be removed so that as
many vectors as possible can be placed in the SPE at one
time.

Gedae has been used to implement this distributed SAR
algorithm and map it to all 8 SPEs on a Cell/B.E. processor.
The Trace Table for this implementation is shown in Figure
3. The top of the table shows the load for each of the 8
SPEs (the black bars showing time the SPE is processing
data), and the bottom of the table is collapsed to show the
processing of one of the 8 threads in the application,
highlighting the range, transpose, and azimuth processing.
As shown in the table, the SPE utilization is very high. For
comparison, this same Gedae application was run on a quad
DSP board with 500MHz PowerPC processors. The
PowerPC implementation achieved 3 frames per second.
Once optimized routines are incorporated into the Cell/B.E.
processor board support package for Gedae, we expect the
implementation to achieve over 130 frames per second.

Figure 3 – The Trace Table of the 8 SPE implementation
shows the processing is very dense, and the distributed
transpose takes a modest portion of the time per data set.

Parallel FFT Algorithm
To study the Cell/B.E. processor’s ability to rapidly process
data we will also study a parallel implementation of an
FFT. In this implementation, the data is distributed across
the SPEs’ local storage. To perform an FFT on a vector of
length N, first we perform √N FFT operations on vectors
the size of √N and apply a weight vector to the results.
Then a corner turn is performed, and another √N FFT
operations of size √N are performed.

Corner
Turn

FFT FFT

Figure 4 - This parallel FFT implementation distributes the
log2N-by-N/2 butterfly operations to the 8 SPEs.

The key issues in implementing this distributed FFT
operation are distributing the work across the processors,
implementing the corner turn, and maximizing the amount
of data processed in each execution. The data sizes for the
FFT allow this corner turn to be implemented without using
system memory. As the EIB on the Cell/B.E. processor is
implemented as a data ring, structuring the partitioning and
mapping of these stages to best take advantage of the ring
structure is key to achieving high performance. Several
different mapping schemes are investigated using Gedae to
determine the best scheme for this algorithm.

Conclusions
Multi-core architectures like the Cell/B.E. Architecture are
powerful compute engines. The bus and memory
architectures of these multi-core processors play an
important role in determining their applicability to a wide
variety of problems. Making proper use of these
components has a large impact on achieving performance
close to the published theoretical maximums of the
architectures. Coding for these architectures can easily
obfuscate these issues and direct the effort away from
exploiting the hardware and towards simply getting the
code working. Addressing these issues in a structured,
systematic way, such as using Gedae, frees the developer to
focus on making best use of the hardware while still
achieving high performance with low overhead.

References
 [1] IBM, Sony Computer Entertainment, Toshiba. Cell

Broadband Engine Programming Handbook, Version 1.1,
April 2007. <http://www.ibm.com>.

[2] J. A. Kahle, et al., “Introduction to the Cell multiprocessor,”
IBM Journal of Research and Development, Vol. 49, No. 4/5,
2005.

Distributed
Transpose

Range
processing

Azimuth
processing

http://www.ibm.com/

