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Introduction 
The Cell Broadband Engine™ Architecture was developed 
as a collaboration between Sony, Toshiba, and IBM.  The 
current implementation of the Cell Broadband Engine 
(Cell/B.E.) processor combines one Power Processing 
Element (PPE) with 8 identical Synergistic Processing 
Elements (SPE).  The PPE is a dual-threaded PowerPC core 
with an instruction set that has been extended to include 
SIMD (Single-Instruction, Multiple-Data) instructions 
known as VMX.  Each SPE contains a high-speed SIMD 
processor with its own 256 kB local store and DMA engine.   
The nine cores and the on-chip memory controller and I/O 
controller are interconnected with the high speed Element 
Interconnect Bus (EIB) as shown in Figure 1.  The EIB 
provides a measured peak bandwidth of over 200 GB/s at 
3.2 GHz. 
. 

 

 

Figure 1 – The current Cell/B.E. Processor combines a PPE 
core with 8 SPE cores, all interconnected via a high-speed bus. 

Because the PPE provides relatively modest performance, 
the key to using the Cell/B.E. processor efficiently is to take 
best advantage of the SPEs.  While an SPE can process 
vector arithmetic very efficiently, each SPE has only 
256KB of dedicated local storage which holds both 
instructions and data.  Thus when processing a large data 
set, the developer must either distribute the large data set 
across the processing cores or store the data in off-chip 
system memory.  For instance, an entire 1k-by-1k complex 
matrix cannot reside in the SPE local storage, even if the 
program size is zero.  Therefore large data sets will initially 
reside in system memory, and then the developer will 

stripmine the data, bringing it chunk-by-chunk to the SPE 
local storage for processing. 
 
This paper will study how these programming 
considerations affect the implementation of the synthetic 
aperture radar (SAR) algorithm.  We will study the 
performance improvement possible by distributing the work 
to the Cell/B.E. processor’s cores, as well as the issues that 
must be resolved to create that distribution.  Additionally 
we will study a distributed FFT where the data for each 
vector is distributed across the SPEs.  The Gedae 
programming language and development tools will be used 
to conduct these experiments on the Cell/B.E. Architecture 
and analyze the performance. 
 
Distributed SAR Algorithm 
To study the practicality and performance of real-world 
applications on the Cell/B.E. processor, we will port a SAR 
algorithm to the PPE and SPEs.  The SAR algorithm has 
two key stages: the range processing of the rows of the 
matrix, and the azimuth processing of the columns of the 
matrix.  To distribute the SAR algorithm we must add three 
stages: the partitioning of the data to distribute the rows 
across the processors, a corner turn of the data (distributed 
matrix transpose) to transition between range and azimuth 
processing, and the concatenation of the column-based 
results.  In real-world applications, we must also do 
additional preprocessing to unpack the data, remove the 
possibility of phase errors, and additional error reduction.   
With these added processing requirements due to the 
distribution, the distributed SAR algorithm is as shown in 
Figure 2.  

C
or

ne
r T

ur
n 

 
Figure 2 - Stages of the distributed SAR algorithm. 

A key issue in implementing this distributed SAR algorithm 
efficiently on this architecture is the implementation of the 
corner turn.  While the EIB provides a high bandwidth 
between the SPEs for corner turn operations, the data sets 
typical for a SAR algorithm cannot fit in the local storage 
of the SPEs.  To do the work of a corner turn on a large 
SAR data set, the results of the range operation must be 
transferred to system memory, and then – once full columns 

Pr
ep

ro
ce

ss
 

Pa
rt

iti
on

 

A
zi

m
ut

h 

R
an

ge
 

C
on

ca
te

na
te

 

mailto:wlundgren@gedae.com
mailto:rick.pancoast@lmco.com
mailto:djerb@us.ibm.com
mailto:kbarnes@gedae.com
mailto:jsteed@gedae.com


are available – transferred back to the SPEs in transposition.  
Because this approach places demands on the bandwidth 
between the SPEs and system memory as opposed to the 
relatively fast bandwidth between SPEs, there is a concern 
that the transpose can dominate the time of the algorithm. 
 
A second issue in implementing this algorithm on the this 
architecture is maximizing the number of vectors that are 
computed together on the SPE’s.  The SPE’s can perform 
vector processing with amazing efficiency, so the developer 
must maximize the size of these vectors to gain as much 
performance benefit as possible.  As the SPE’s local storage 
must be used as both program memory and data memory, 
its size is a limiting factor.  Program overhead must be 
minimized and unused code must be removed so that as 
many vectors as possible can be placed in the SPE at one 
time. 

 

 
Gedae has been used to implement this distributed SAR 
algorithm and map it to all 8 SPEs on a Cell/B.E. processor.  
The Trace Table for this implementation is shown in Figure 
3.  The top of the table shows the load for each of the 8 
SPEs (the black bars showing time the SPE is processing 
data), and the bottom of the table is collapsed to show the 
processing of one of the 8 threads in the application, 
highlighting the range, transpose, and azimuth processing.  
As shown in the table, the SPE utilization is very high.  For 
comparison, this same Gedae application was run on a quad 
DSP board with 500MHz PowerPC processors.  The 
PowerPC implementation achieved 3 frames per second.  
Once optimized routines are incorporated into the Cell/B.E. 
processor board support package for Gedae, we expect the 
implementation to achieve over 130 frames per second. 
 

 
Figure 3 – The Trace Table of the 8 SPE implementation 
shows the processing is very dense, and the distributed 
transpose takes a modest portion of the time per data set. 

Parallel FFT Algorithm 
To study the Cell/B.E. processor’s ability to rapidly process 
data we will also study a parallel implementation of an 
FFT.  In this implementation, the data is distributed across 
the SPEs’ local storage.  To perform an FFT on a vector of 
length N, first we perform √N FFT operations on vectors 
the size of √N and apply a weight vector to the results.  
Then a corner turn is performed, and another √N FFT 
operations of size √N are performed.   
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Figure 4 - This parallel FFT implementation distributes the 
log2N-by-N/2 butterfly operations to the 8 SPEs. 

The key issues in implementing this distributed FFT 
operation are distributing the work across the processors, 
implementing the corner turn, and maximizing the amount 
of data processed in each execution.  The data sizes for the 
FFT allow this corner turn to be implemented without using 
system memory.  As the EIB on the Cell/B.E. processor is 
implemented as a data ring, structuring the partitioning and 
mapping of these stages to best take advantage of the ring 
structure is key to achieving high performance.  Several 
different mapping schemes are investigated using Gedae to 
determine the best scheme for this algorithm. 
 
Conclusions 
Multi-core architectures like the Cell/B.E. Architecture are 
powerful compute engines.  The bus and memory 
architectures of these multi-core processors play an 
important role in determining their applicability to a wide 
variety of problems.  Making proper use of these 
components has a large impact on achieving performance 
close to the published theoretical maximums of the 
architectures.  Coding for these architectures can easily 
obfuscate these issues and direct the effort away from 
exploiting the hardware and towards simply getting the 
code working.  Addressing these issues in a structured, 
systematic way, such as using Gedae, frees the developer to 
focus on making best use of the hardware while still 
achieving high performance with low overhead. 
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