
Sourcery VSIPL++ for the Cell/B.E. 
High Level Libraries for Multi-core Architectures 

J. Bergmann1, M. Mitchell1, D. McCoy1, S. Seefeld1, A. Salama1, F. Christensen2, R. Pancoast3, T. Steck3 
1CodeSourcery, Inc. 2IBM  3Lockheed-Martin 

jules@codesourcery.com 
 

Introduction 
Sourcery VSIPL++ for the Cell/B.E. implements the open 
standard VSIPL++ signal and image-processing API [1] on 
the IBM Cell/B.E. multi-core processor architecture [3].  It 
is suitable for implementing high-performance signal-
processing applications that take full advantage of the 
Cell/B.E. processor throughput, without sacrificing 
programmer productivity or application portability. 

For example, fast convolution in VSIPL++ sustains over 80 
GFLOP/s on a single Cell/B.E (40% of peak) with no 
architecture specific code.  The algorithm scales to multiple 
processors, sustaining over 320 GFLOP/s on four Cell/B.E.s.  
It remains portable to other architectures, achieving 6 
GFLOP/s on Intel Xeon and 6.6 GFLOP/s on Power. 

Cell/B.E. 
The Cell/B.E. is an asymmetric, multi-core processor 
architecture developed by IBM, Sony, and Toshiba.  It is 
described as “supercomputer on a chip” capable of over 200 
peak single-precision GFLOP/s on a single chip with 9 
cores.  For more detailed descriptions of its architecture, 
refer to [3]. 

The key challenge for Cell is programming it effectively.  At 
the low-level, the cores’ simple micro-architecture provides 
an attractive programming model: in-order issue, uniform 
large register file, fixed memory latency, and off-loaded 
communication.  However, at the high-level, the asymmetry 
and tiered memory require applications to expose and 
manage greater coarse-grain parallelism. 

Coding to the architecture directly has the potential for high-
performance, but it also limits portability to/from other 
architectures, and lowers developer productivity.  
Experience in DOD software development, where system 
lifecycles are much longer than technology refresh rates, 
shows that low portability and low productivity lead to much 
greater software development costs and program risk.  
Successful adoption of the Cell/B.E. architecture into DOD 
programs requires software development approaches that 
can achieve high-performance without sacrificing portability 
and productivity. 

VSIPL++ 
VSIPL++ [1] is an open standard, high-level API  for 
parallel high-performance signal and image-processing.  It is 
defined by the High Performance Embedded Computing 
Software Initiative (HPEC-SI) [4], a consortium  of 
industrial, academic, and governmental partners, with 
sponsorship from the DOD.  VSIPL++ defines a pure C++ 
interface for operations including FFTs, filters, linear system 
solvers, and other operations useful in developing radar, 
sonar, communication, and medical imaging applications. 

The API’s goal is to simultaneously deliver the “three P’s” – 
productivity, portability, and performance.  Improved 
productivity derives from the high-level functionality which 

requires fewer lines of code to express complex algorithms.  
Greater portability follows from standardization and the 
broader optimization scope afforded by high-level 
descriptions.  Higher performance results from sophisticated 
implementation techniques allowed by the API design. 

Sourcery VSIPL++ 
Sourcery VSIPL++ is a high-performance implementation of 
the parallel API.  Sourcery VSIPL++ uses a number 
sophisticated implementation techniques to achieve high 
performance on GNU/Linux, Mercury Power, and Windows 
single and multiple processor systems [2]. 

Expressions templates allow the library to manipulate parse 
trees for application code at compile time.  Code is evaluated 
by a powerful, extensible dispatch engine.  Compile-time 
attributes (such as dimension ordering, and parallel 
distribution) and run-time attributes (such as stride) are 
considered to choose the highest performance 
implementation. 

Sourcery VSIPL++ can take advantage of existing optimized 
low-level math libraries, such as the Intel Performance 
Primitives (IPP) or the Mercury Scientific Algorithm Library 
(SAL).  Simple operations, such as vector addition or matrix 
product, can be dispatched through a math library interface 
to vendor libraries with near zero overhead. 

Sourcery VSIPL++ recognizes fused operations from simple 
operations, like fused multiply-add: A*B + C, to complex 
operations like fast convolution, shown below.  Dispatch 
considers the entire fused operation allowing global 
optimizations to be performed, such as changing order of 
computation to improve cache locality and reduce memory 
bandwidth. 

Sourcery VSIPL++ for Cell/B.E. 
Sourcery VSIPL++ for the Cell/B.E. balances a simple 
programming model with optimal utilization of the Cell’s 
capability.  The PPE is used to run the application.  The 
SPEs are used as high-performance computation engines.  
IBM’s Acceleration Library Framework (ALF) [5] manages 
the SPEs, handling initialization and double-buffered data 
transfer to hide communication latency behind computation. 

Sourcery VSIPL++’s dispatch engine recognizes 
computation which can be mapped to the SPEs.  Compile-
time and run-time attributes control which and how many 
SPEs are allocated for a computation.  A variety of factors 
are considered, including data layout, operation being 
performed, and the ratio of computation to communication.  
Application attributes can also be used to tune the allocation. 

This approach allows existing VSIPL++ codes to take 
advantage of the Cell/B.E.s by recompiling.  Additional 
performance may be gained by tuning data structure 
attributes to influence resource allocation, and using fused 
operations to create locality and optimization potential. 

mailto:jules@codesourcery.com


Example: Fast Convolution 
Fast convolution – convolution in the frequency-domain – is 
widely used in signal processing applications to implement 
filters and other convolutions.  In radar pulse compression it 
implements a matched filter on received radar data against 
the transmitted pulse.  A datacube contains many pulses 
which can be filtered independently.  In VSIPL++ this is 
expressed using multiple FFT (Fftm) objects and vector-
matrix multiply (vmmul). 

First, views are declared to hold the data cube and the FFT 
signal processing objects: 

typedef complex<float> T; 
typedef Dense<2, T, row2_major, Map<> > 
        data_block_type; 
typedef Dense<1, T, row1_major, Global_map<1> > 
        weights_block_type; 
Map<> map(num_processors()); 
Vector<T weights_block_type> weights(size); 
Matrix<T, data_block_type> data(rows, size, map); 
Domain<2> dom(n_pulses, n_cells); 
Fftm<T, T, row, fft_fwd> fwd(dom, 1.0); 
Fftm<T, T, row, fft_inv> inv(dom, 1.0/n_cells); 

Next, the weights are transformed into the frequency domain 
via an in-place FFT: 

fft_ip<fwd_fft>(weights); 

Finally, the convolution itself is expressed as: 
data = inv(vmmul<row>(weights, fwd(data))); 

This statement performs three steps: First, the fwd Fftm 
object transforms the rows of matrix data from the time-
domain to the frequency-domain.  Next, the vector-matrix 
multiply operation multiplies each frequency-domain row by 
the weights vector.  Finally, the inv Fftm object transforms 
the result back into the time-domain. 

On the Cell/B.E., Sourcery VSIPL++’s fuses the three steps 
into a single fast convolution operation.  The dispatch engine 
maps this to a fused convolution kernel that runs on the 
SPEs.  This kernel streams through data, performing 
forward FFT, vector-multiply, and inverse FFT one row at a 
time.  Fusion allows intermediate results to be kept within 
the SPE, eliminating unnecessary communication. 

Performance 
Figure 1 shows the fast convolution performance on the 
Cell/B.E.   

Multiple Cell BEs (3.2 GHz)

0

50

100

150

200

250

300

350

16 32 64 128 256 512 1024 2048 4096 8192

Number of Rows

G
FL

O
P/

s

1 Cell BE 2 Cell BEs 4 Cell BEs

Figure 1: Cell/B.E. Fast Convolution Performance 

The dark blue line shows performance for a single Cell/B.E.  

At 4096 rows, 82.6 GFLOP/s is sustained (40.3% of the 
SPEs’ theoretical peak performance of 204.8 GFLOP/s).  
This corresponds to 11.6 GB/s of memory bandwidth 
(45.3% of the peak bandwidth of 25.6 GB/s). 

Scalability.  The pink and yellow lines show performance 
using 2 and 4 Cell/B.E.s respectively.  Going from 1 to 
multiple PPEs is controlled via run-time parameters to the 
application.  For 4 processors (yellow), 300 GFLOP/s is 
sustained at 4096 rows, a 3.6-fold speedup.  The speedup is 
sub-linear because each Cell is now processing a smaller, 
less efficient problem size.  When the problem size is scaled 
with the number of processors, the speedup is over 3.9 times. 

Portability. Because the VSIPL++ API is portable, and 
because Sourcery VSIPL++ runs on multiple architectures, 
the fast convolution application runs on other systems as 
well.  A recompilation is all that is required.  Figure 2 shows 
fast convolution performance on the Pentium 4 Xeon, Power 
970FX, and Cell/B.E. architectures. 

Comparing Cell/B.E. to Other Processors

0
10
20
30
40
50
60
70
80
90

16 32 64 128 256 512 1024 2048 4096 8192

Number of Rows

G
FL

O
P/

s

Pentium 4 Xeon (3.6 GHz) PowerPC 970 FX (2.0 GHz) 1 Cell BE (3.2 GHz)

Figure 2: Comparing Cell/B.E. to Other Processors 

For the Pentium 4 Xeon processor, Sourcery VSIPL++ uses 
IPP for low-level operations.  The best sustained 
performance is 6.0 GFLOP/s, 41.8% of theoretical peak.  On 
the PowerPC 970 FX, Sourcery VISPL++ uses FFTW for 
FFTs.  The best sustained performance is 6.6 GFLOP/s, 
41.2% of theoretical peak.  

The Cell/B.E. substantially outperforms these other 
processors. 

Conclusion 
The Cell/B.E. architecture’s performance capability has 
strong potential for signal processing applications.  Sourcery 
VSIPL++ provides a demonstrated development approach 
for Cell/B.E. that delivers performance without sacrificing 
application portability or developer productivity. 

References 
[1] CodeSourcery, Inc. VSIPL++ Specification 1.0.  Georgia Tech 

Res. Corp. 2005 [online] Available: http://www.hpec-si.org. 

[2] CodeSourcery, Inc. Sourcery VSIPL++.  [online] Available: 
http://www.codesourcery.com/vsiplplusplus. 

[3] M. Gschwind, et al.  “Synergistic Processing in Cell’s 
Multicore Architecture.”  IEEE Micro, March 2006. 

[4] High Performance Embedded Computing Software Initiative.  
[online] Available http://www.hpec-si.org/. 

[5] IBM Cell Broadband Engine Software Development Kit.  
[online] Available: http://www.alphaworks.ibm.com/tech/

 
 

cellsw?open&S_TACT=105AGX16&S_CMP=DWPA

http://www.hpec-si.org/

	Text1: 


