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Abstract

This article describes the use of the cell broadband en-
gine as a high-performance platform for simulating the dis-
charge of a lead acid battery to determine its state of health
in an embedded application.

The discharging of the battery is modelled as a two-
dimensional electrochemical process. The model equations
are a set of coupled highly non-linear partial differential
equations that evolve with time. At each time step, these
equations are solved using Newton’s Method, and a direct
skyline LU solver without partial pivoting is used to solve
for the battery cell’s state at each Newton step.

The entire model was implemented on a Sony Playsta-
tion 3 and the direct solver at each Newton iteration step
exploits the parallelism in the Cell Broadband Engine to
improve performance. The parallelized direct solver out-
performs state-of-the-art dense and sparse linear solvers
running on desktop workstations.

1 Introduction

With the increased adoption of hybrid and electric cars,
there is also an increased interest in determining in real
time, important parameters about automobile batteries such
as the state of charge, state of health and remaining cycle
life. Unfortunately, an accurate assessment of these pa-
rameters requires computationally expensive mathematical
models such as those described in [1]. Due to the power-
hungry nature of existing high-performance workstations,
the use of accurate models of automobile batteries in em-
bedded applications was until recently not possible. How-
ever, the emergence of low-power multi-core chips such as
the Cell Broadband Engine has put multi-gigaflop perfor-
mance within reach of several embedded applications.

In this article we describe the parallel implementation
of a two-dimensional electrochemical model of a lead acid
battery on the Cell Broadband Engine. We first give a brief

overview of the model, followed by the description of the
parallel sparse direct solution algorithm and its implemen-
tation on the Cell processor. We the compare its perfor-
mance and scaling characteristics with respect to state of the
art dense and sparse solvers on existing high-performance
workstations. Finally, we present our conclusions along
with avenues for further investigation.

2 Model and Parallel Implementation

The mathematical model used for simulating the dis-
charge of a lead acid battery is described in more detail in
[1, 2] and references therein.

The model has four state variables that evolve with time:
the porosity of a regionε, the concentration of the elec-
trolyte c, the liquid phase electrical potentialφl, and the
solid phase electrical potentialφs.

The spatial region of interest is discretized into a stag-
gered finite volume grid, with the electrolyte concentration
and the liquid and solid phase electrical potentials being
represented on the PV (potential value) grid and the poros-
ity on the FV (flux value) grid.

The variables on the PV grid are solved for at each time
step as a coupled set of non-linear equations using New-
ton’s method and the corresponding values in the FV grid
are then obtained directly as described in [1]. Each New-
ton iteration requires the solution of a system of the form
Jx = r, whereJ is the Jacobian matrix andr is the resid-
ual vector. For the particular model under investigation and
the chosen discretization scheme, the Jacobian is banded
and has a condition number of roughly108. It is therefore
most effeciently solved using a sparse direct solver.

The direct solver has two major computational phases:
forward elimination followed by back substitution. The for-
ward elimination part is more computationally intensive,
O(b2N) (whereN is the size of the Jacobian andb is the
half-bandwidth) and is therefore performed in parallel on
the Synergistic Processing Units (SPUs) of the cell proces-
sor with the Power Processing Unit (PPU) being used for



synchronization. The back substitution phase is computa-
tionally less expensive (O(bN)) and is therefore done com-
pletely on the PPU.

Pseudocode for the forward elimination step on the Ja-
cobian is given in Algorithm 1. The actual code that runs
on the SPUs is double buffered and employs SIMD instruc-
tions to maximize computation efficiency. Note that due to
the poor conditioning of the Jacobian, all computations are
performed directly in double precision.

3 Performance results

The performance characteristics of our sparse direct
solver are illustrated in Figure 1 (a) and (b).

It is observed that while our algorithm does scale with
increasing number of SPUs, the speedup is sub-linear be-
yond two SPUs. This can be attributable to the increase in
time it takes the PPU to synchronize the increasing numbers
of SPUs. However, even with the increased synchronization
overhead, it is observed in Figure 1 (b) that the parallelized
sparse solver on the cell processor is around 50% faster than
UMFPACK [3] and several hundred times faster than LA-
PACK for a linear system of size3264× 3264.

4 Conclusions

In this article, an numerical algorithm for the simulation
of a two-dimensional electrochemical model of a lead acid
battery derived in [1] was presented. The most computa-
tionally expensive component of this model is the solution
of a banded linear system of equations during each Newton
iteration step. Therefore, an algorithm for solving this sys-
tem in parallel on a Cell Broadband Engine was presented.
The proposed approach clearly outperforms existing sparse
solvers running on modern desktop workstations. This sug-
gests that the Cell Broadband Engine can be effectively used
in low-power embedded applications requiring significant
computational resources.
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Input: The Jacobian matrix,J at a Newton iteration
with half-bandwidthb and the residual vector,r

Result: Forward elimination is performed on the
Jacobian and the residual vector

for i←− 1 to N − 1 do
//Fetch base rowi from main memory
Jlocal,i = post recv(J[P[i], i : i + b])
//Fetch first elimination row for this SPU,

i + spuid from main memory
if i + spuid ≤ N then

Jlocal,i+spuid =
post recv(J[P[i + spuid], i + spuid :
i + spuid+ b])

end
//Wait for base row and first elimination row to

arrive
wait for completion(Jlocal,i,
Jlocal,i+spuid)
for j ←− i + spuid to i + b do

//Pre-fetch next elimination row for this SPU,
j + spuid from main memory

if j + spuid ≤ N then
Jlocal,j+spuid = post recv(J[P[j +
spuid], j + spuid : j + spuid+ b])

end
//Perform elimination on rowj
Jlocal,j[i]←− Jlocal,j [i]/Jlocal,i[i]
for k ←− i + 1 to i + b do

Jlocal,j [k]←− Jlocal,j [j]× Jlocal,i[k]
end
//Post the updated row back to main memory
post send(Jlocal,j)
//Wait for all pending posts
wait for completion(Jlocal,j)
//Wait for next elimination row to arrive
if j + spuid ≤ N then

wait for completion(Jlocal,j+spuid)
end

end
//Wait before starting next base row
wait for notification

end

Algorithm 1: Algorithm for parallel forward elmina-
tion step of the banded direct solver.
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Figure 1. Performance of the parallel sparse
direct solver in normalized GFlops: (a) Scal-
ing with increasing number of SPUs and (b)
Relative performance with dense and sparse
solvers on a workstation for solving a 3264×
3264 system.




