
DARPA STAP-BOY:
Fast Hybrid QR-Cholesky Factorization and Tuning Techniques

for STAP Algorithm Implementation on GPU Architectures

Dr. Dennis Healy
DARPA MTO

Dr. Dennis Braunreiter
Mr. Jeremy Furtek

Dr. Nolan Davis
SAIC

Dr. Xiaobai Sun
Duke University

High Performance and Embedded Computing (HPEC)
Workshop

18 - 20 September 2007

2

STAP-BOY: Concept

STAP-BOY Goal:
ν

Develop low-cost, scalable, teraflop,
embedded multi-modal sensor processing
capability based on COTS graphics chips

STAP-BOY Approach:
ν

Map complex algorithms to COTS graphics
chips with open source graphics languages

ν

Prototype scalable, parallel, embedded
computing architecture for handhelds to
teraflop single card

ν

Demonstrate on available, tactically
representative sensor systems

Laptop
Soldier

Hand-Held

UAV

UAV

UAV

Constant Hawk Advanced EO/IR Processor
100Mpixel camera, 10 GPUs (10kmx10km, 1m)

Current Spec

Problem:
ν

Complex sensor modalities and algorithms needed for
smaller platforms (SAR, 3D-motion video, STAP, SIGINT,
…)

ν

Low-cost platform constraints limit real-time on-board/off-
board and distributed sensing algorithms and
performance

ν

Timely distribution, visualization, and processing of
mission-critical data not available to tactical decision
makers

½ Teraflop
10 ATI™ Mobile
GPUs 100W Total
Power
$<15K

ATI is a trademark of Advanced Micro Devices, Inc. in the United States and/or other countries.

3

Applications Pull

50 75 100 500 1000 2000200 350

GFLOPs
10

20
30

40

100
200

400

Power (W
atts)

EO/IR Track-before-detect

GMTI-STAP

2D SAR

10

20

25
16Mpixel

2Hz

64km/1ft

64km,
64beams

1km,
16beams

C
os

t (
$K

)

0.5

1.0

1.5 67Mpixel
2 Hz

1000Mpixel
2 Hz

1km/1ft

4km/1ft

10km,
32beam

16km/1ft

0.1
CPU/DSP
Systems

1000+
ASIC

Image size
Frame rate

CPU=central processing unit DSP= digital signal processing
The ATI logo is a trademark of Advanced Micro Devices, Inc. in the
United States and/or other countries.

Presenter
Presentation Notes
This slide discusses the applications pull for the phase two STAP-BOY activity. The dynamics in increasing throughput requirements for applications is three-fold. The first is that the sensor resolution continues to improve as well as the persistent capability of the sensor platforms. The second is that the communications bandwidth remains constant so that increases the requirement to perform processing on board the platforms for the sensor so that only data of interest is transmitted to the ground station. The third is that the platforms are cost constrained, and that more dollars are not available for the continued development of sensor capability. In summary, the sensor development in resolution outpaces the development in communications bandwidth, and dollars available for processing. STAP-BOY addresses these challenges by uniquely exploiting the low dollar/watt/flop capability of the commodity graphics processor to provide low cost tera-flop computing. The cost constrained platforms include UGV/UAV platforms where a mini-blade mounted processor will apply, and the dismounted soldier who requires a handheld to process advanced sensor data such as ultra-high resolution wall penetrating radar.

The application of the GPU to DoD signal processing challenges was shown in phase one to be particularly advantageous for signal processing on large arrays which is directly related to increasing sensor resolution. In particular, the algorithm exemplars for this figure are selected from the STAP-BOY phase one algorithm demonstration and include GMTI-STAP, wide area SAR/tomography, and EO/IR motion detection and track before detect. These are discussed below:

 In the case of the EO/IR track before detect, this algorithm involves the estimation of image registration coefficients, remapping of the imagery to a common frame, subtraction, and shift and stacking of the imagery according to a target model. In the case of the analysis on this slide, we assumed here that there were 10,000 targets (dismounts) in a square kilometer, and that 16 frames were needed to be stacked and added to detect a dim target. Dim targets are present in the day when the signature is close to the background, and at night time, for example, with uncooled SWIR imaging camera. Current and future persistent surveillance platforms are collecting significant quantities of high resolution mega pixel video from EO/IR cameras for storage and playback. The example is Constant Hawk (counter IED mission) (100Mpixel, 2 Hz). Currently capability only playback, and projected processor capability only able to provide surveillance over small area due to pixel and processing requirements. More pixels are required to survey larger image regions. The future capability will require the imagery to be processed for detection and tracking of movement of dismounts and low contrast targets, and low contrast change detection for placement of IED(s). Idea is to store only the data with the suspected activity which increases the speed at which the data can be accessed and flagged for automatic insurgency interdiction. The dismount version of this capability will require either on board or on a hand held to process the overhead data immediately for dismount mover detection and tracking from multiple UAVs in the vicinity of the handheld ground station, and overlay this imagery onto a map. In the STAP-BOY phase one program, SAIC demonstrated the ability to outperform CPUs by 20:1 and sustain 8 GFLOPS of computation rate with commercially available tools as a starting point.

Another key challenge is in the area of high resolution SAR. Two factors are important to note, one is that the SAR center frequency is increasing from say Ka to W band, and that the search area and the resolution due to the increase in frequency continues to increase proportional to the frequency. This data will be required to be processed on the ground station, or the platform in the case of communications constrained platforms. In the case of the smaller UAV platform, low cost SAR image formation will need to be performed on communication constrained platforms, prior to distribution to the ground station.

The third application is GMTI-STAP weight calculation. In phase one of the STAP-BOY program, SAIC demonstrated that all of the weight calculation for the Global Hawk MPRTIP planned and future upgrades in GMTI-STAP could be performed with a single GPU. The need to detect and track dismounts in all weather is required and the jamming environment is increasing in complexity, as well as transmit frequency of the radar, which is in turn demands higher degrees of freedom to compensate for clutter motion and jamming cancellation for slow moving targets. Often, the sample support is not present to support 128 DOFs, and the STAP weight calculation needs to include a rank dependent signal processing architecture. SAIC has developed a signal dependent rank reduction Weiner filter, which requires new weights to be estimated for each target model. In addition, the number of radar channels are projected to increase with increasing radar resolution. The impact of both of the signal dependence and the increased number of channels will require more beams to be formed for each weight solution, and the increasing resolution and performance of the radar will increase the number of range gates to which to apply the beamforming weights. The graph depicts three cost/volume/power application examples for GMTI STAP from the communications and smaller sensor manned and dismount compute platforms to the higher resolution, communications and cost constrained unmanned platforms for future detection and search needs.

4

CPUs vs. GPUs

582 million Transistors 681 million

2.66 GHz Clock Speed 1.35 Ghz

4 # of Cores 128

Serial Programming Model Highly parallel

Minimize latency Design Goal Maximize throughput

Complex cores:
• Branch prediction
• Out-of-order execution

Design
Approach

Simple cores:
• Smaller caches
• In-order execution

43 GFLOPS Theoretical Max.
Computation Rate 346 GFLOPS

Intel® quad-core QX6700 NVIDIA® 8800 GTX

Intel is a registered trademark of Intel Corporation in the United States and/or other countries.
NVIDIA is a registered is a registered trademark of NVIDIA Corporation in the United States and/or
other countries.

5

• “Virtual machine” abstraction for GPUs
• Eliminates complicated graphics programming concepts
• Exposes hardware as a data-parallel processor array
• Simplified programming model

• Direct programming and memory management

Source: “A Performance-Oriented Data Parallel Virtual Machine for GPUs,” Segal, M., and Peercy, M. ACM SIGGRAPH Sketch, 2006.

high-speed
texture
cache

output texture
memory

GPU fragment
shading units

output textures can
become input textures

on subsequent
rendering passes
(Recirculation)

input texture
bandwidth

ouput texture
fill rate

transfer from
CPU memory

transfer to CPU
memory

input texture
memory

ﾉ
fragment shader

pipelines

input vertex
data

shader distributor
distribution of

data to individual
shader pipelines

GPU vertex
shading units

ﾉ
vertex shader

pipelines

OpenGL® Graphics Pipeline Data Parallel Virtual MachineVs.

•Requires geometry set-up to perform
computation
–Vertex shaders needed to get data into pixel shaders
–More complex graphics programming model
•Shader memory access controlled by OpenGL
–Hidden copies and cache control limit pixel shader FLOP
performance

OpenGL is a registered trademark of Silicon Graphics, Inc. in the United States and/or other countries.
PCI Express is a registered trademark of PCI SIG Corporation in the United States and/or other countries.

PCI Express®

6

Outline

• Algorithms that take advantage of the highly parallel nature of the GPU
programming model can run significantly faster than on CPUs
– Radar STAP

Weight Solver:
– Covariance method is more parallelizable than QR
– Sliding window algorithm results in additional speed-up

STAP beamforming: matrix-matrix multiply is fast on GPU
– Spin Images

Spin-image matching component: parallel over model and scene
points, reduction over image pixels
Geometric consistency component: parallel over pairs of point
correspondences

– SAR/Tomography
• Continuing advances in GPU hardware and stream software will enable

single chip solutions for a large class of STAP airborne applications and
similarly sized problems

7

Productivity

0.0

0.3

0.5

0.8

1.0

1.3

1.5

0 5 10 15 20 25 30
M

V
o

xe
ls

/S
e

c

Phase I Performance Goal

In
iti

a
l

Fi
na

l Q
R

U
til

iti
e

s

W
a

ve
le

t

To
m

o
g

ra
p

hy

Be
a

m
fo

rm
in

g

V
e

lo
c

ity
 F

ilt
e

r

Days Working

Additional SGPU Algorithm Development Cycle Benchmarks

CPU Baseline = 0.0035
MVoxels/sec (2.8 GHz P4)

STAP-BOY Integrated Development Environment
•100% COTS and/or open source
•42,000 lines of code
•Cross platform suite of libraries
•Automation of common tasks
•Utilities developed by college interns

GLSL Assembly Cg

OpenGl®

Chip Compiler

HLSL

DX3D DPVM

Library

ATI®/NVIDIA® GPU

STAP-BOY SGPU Framework
Windows® XP/LINUX®

Pixel Shaders

Resource Allocation
Error Handling

GPU Math
Library

ACML Library
Matlab I/O

OpenGL is a registered trademark of Silicon Graphics, Inc. in the United States and/or other countries. ATI is a trademark of Advanced Micro Devices,
Inc. in the United States and/or other countries. NVIDIA is a registered trademark of NVIDIA Corporation in the United States and/or other countries.
Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. Linux is a registered trademark of Linus

Torvalds in the United States and/or other countries.

Presenter
Presentation Notes
Multiple GPU Application Programming Interfaces (API): OpenGL/OpenGL ES/OpenGL extensions,DirectX (Windows only), ATI “Close to the Metal” low-level interface, multiple shading languages (Cg, GLSL, HLSL, ARB assembly)

Operating Systems: Linux, Windows XP

Hardware (ATI, NVIDIA)

Development is time consuming, and requires knowledge of a number of different interfaces

SAIC sgpu framework automates common tasks and eliminates many common errors

As with CPU algorithm development, the amount of time to implement is highly dependent on the developer and the algorithm

Data points

QR implementation time went from approx. 1 month at the beginning of the project to approx. 2 days at the end

Implementations of the following algorithms were created and validated by people without extensive graphics experience

Velocity Matched Filter

Tomography

Discrete Wavelet Transform

Beamforming

A summer college intern was able to port almost a dozen benchmark utilities to the sgpu framework in under 8 weeks

Although implementation times have decreased, optimization is still time consuming. The sgpu framework was designed with the task of automating GPU algorithm optimization in mind, and future efforts will pursue this goal.

8

Weight Solver Methods

QR Method

QA=R
RTRx=y

Solve for x

Covariance Method

⊄=ATA
LTLx=y

Solve for x

GPU Implementation

Covariance matrix method yields identical mathematical solution to QR and exploits 2-D
matrix operations in a highly parallel fashion

GPU Implementation

Covariance Matrix ⊄Data Matrix A

Batch mode process

•••

•••

Highly Parallel Fragment Shaders

RT==L

9

Shared-row Covariance Method: Algorithm Steps

T
sss LLC =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

)13(

)5(
)13:5(

0
A
A
L

H
L s

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

)5(

)4(
)12:4(

0
A
A
L

H
L s

Sn
a

p
sh

o
ts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1000

A (6:12)

A (4:5)

A (13:14)

•Compute Cholesky factorization of shared-row covariance matrix

Modification from Golub and Van Loan, 1996

•Update Cholesky Factors using shared row method (derived on next slide)

•Estimate covariance matrix of the shared rows (6:12)

∑
=

=
12

6 6
1

l

T
lls AAC

•If covariance matrix is block Toeplitz

∑
=

=
12

6
):1():1(6

1
l

T

k
nlnls AAC

H can be a sequence of Givens or Householder rotations
Now we have computed the following Cholesky factors:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

)14(

)13(
)14:6(

0
A
A
L

H
L s

where is lower triangularsL

where Al is a snapshot vector

TLLC)12:4()12:4()12:4(= TLLC)13:5()13:5()13:5(= TLLC)14:6()14:6()14:6(=

10

Shared-Row Covariance Method: Low-Rank Updates
Sn

a
p

sh
o

ts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1000

RN =A(4:5)TA (4:5) + A(6:12)TA (6:12)

A (6:12)

A (4:5)

A (13:14)

RN+1 =A5TA5 + A(6:12)TA (6:12) + A13TA13

RN+2 =A(13:14)TA (13:14) + A(6:12)TA (6:12)

Shared Rows
Low Rank P

Updates

•Method for Low Rank Update of Cholesky Factor*

Modification from Golub and Van Loan, 1996

•Goal is to Find an H such that

•H can be a sequence of Givens or Householder rotations

L
N+2

TL
N+2

= A
(6:12)

T A
(6:12)

+ A
(13:14)

T A
(13:14)

= L
(6:12)

TL
(6:12)

+ A
(13:14)

T A
(13:14)

= [LT
(6:12)

AT
(13:14)

]
I
N

0

0 I
p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

L
(6:12)

A
(13:14)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

HTH = I
(n+p)

H
L

(6:12)

A
(13:14)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

L
N+2

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

11

In Both Cases, Demonstrated One to Two Order Magnitude Speedup
Over 64-Bit State-of-the-Art CPUs

Performance
Parameter

Phase One
Goals

(+12months)

CPU
Performance

STAP-BOY
GPU

Performance

STAP Weights Solution

Matrix Size
Updates
of Nodes
Computation
Time
Throughput

384K x 128K
1000

1
30 ms

50 GFLOPS

384K X 128K
1000

1
300 ms

6.2*/64**

384K X 128K
1000

1
4900 ms

3

Performance
Parameter

Definition CPU
Performance

STAP-BOY
GPU

Performance

STAP Beamforming

Filter Size

Computation
Time
Throughput

DopplerxRange
xChannel

ms

GFLOPs

•128x1 vector formed by 4x2 window across 16 channels
•128x1 weight vector stored in memory
•Output is dot-product of weight vector with data vector
•Data window moves for each pixel in range doppler map

256x1000x16

760 ms

0.36

256x1000x16

32 ms

8.1

Batch mode
process

•••

Highly Parallel
Fragment Shaders

*QR Solver **Covariance Solver

* Throughput for QR Decomposition
** Throughput for matrix-matrix multiply

Total Speedup for the STAP Algorithm

12

Interpreting Range with Spin-Image Mapping

13

scene surface
similar images?

model surface

Yes

• Spin-image Matching
– For each sample scene

point, compare to all model
points

– Match using image
correlation

• Geometric consistency
– Find pairs of point

correspondences with best
spin-coordinate match

• Transformations
– Best pair of point

correspondences
determines a
transformation that maps
the model into the scene

Spin-Image Surface Mapping

*A. Johnson, Spin-Images: A Representation for 3-D Surface Matching, doctoral dissertation, The Robotics Institute, Carnegie Mellon Univ., 1997.

*

14

• Spin-image matching component
– Image-correlation-based statistic

Parallel over model and scene points
Reduction over image pixels
O(W*H*P*M*S) for WxH spin-image at P model points on each of M
models with S sample scene points

• Geometric consistency component
– Coordinate match statistic

Parallel over pairs of point correspondences
O(M*N2) for N point correspondences for each of M models

Parallel Processing Opportunities

15

Achieving Speedup

• Offload explicitly parallel portions to the GPU
Spin-image correlation
Spin-image coordinate matching

– Bulk of processing time (Time Reduction regime)
– Only 2 times -3 times speedup

• Address less obvious parallelizations
Geometric consistency thresholding

– Where not fully parallelizable in current API, then do minimal amount on CPU
and utilize GPU/CPU shared memory to reduce data transport.

– Eliminated most of remaining serial time (Transition regime)
– 8 times – 11 times speedup

• Consolidate code on GPU to minimize data upload/download
– Small reductions in overall time gave large increases in speedup (Data

Throughput regime)
– 20 times - 24 times speedup

16

• Graphics card: ATI™
X1900 XTX

– 48 pixel shaders @
640 MHz

– GPU Memory 512 MB
– GPU Memory

bandwidth 1550 MHz
• CPU: Xeon® 2800 MHz
• Comms: PCI Express®

– 250 MB/s each
direction, per lane

– 16 lanes: 4 GB/s

GPU Speedup & Timing

ATI is a trademark of Advanced Micro Devices, Inc. in the United States and/or other countries.
Xeon is a registered trademark of Intel Corporation in the United States and/or other countries.

PCI Express is a registered trademark of PCI SIG Corporation in the United States and/or other countries.

17

2D SAR/Tomographic Reconstruction

Matrix Size

Computation
Time
Speedup

Throughput

Range (ft) x
Crossrange (ft)

sec

GPU/CPU

GFLOPs

2048 x 2048

7.35 sec

159.4

21

2048 x 2048

1171.3 sec

0.006

0.132

Green boxes indicate
true target locations

Additional results

Performance
Parameter

Definition CPU
Performance

STAP-BOY
GPU

Performance

2D Wavelet Transform (Daubechies-6)

Number of Pixels

sec

GPU/CPU

GFLOPS

1024 x 1024

0.015

60

12

1024 x 1024

0.953

0.016

0.36

•Motivation: fast numerical linear algebra, sparse matrix
representation, QR decomposition
•Non-standard form: HH, HL, LH, LL stored in 4 color textures
•Recirculation of LL to process next level of resolution tree

Performance
Parameter

Definition CPU
Performance

STAP-BOY
GPU

Performance

Matrix Size

Computation
Time
Speedup

Throughput

STAP-BOY Signal Processing Implementations Demonstrated Almost Two Order
Magnitude Speedup over State-of-the-Art CPU with Three-Week Development Cycles

18

Summary

• Algorithms that take advantage of the highly parallel nature of the GPU
programming model can run significantly faster than on CPUs
– Radar STAP

Weight Solver:
– Covariance method is more parallelizable than QR
– Sliding window algorithm results in additional speed-up

STAP beamforming: matrix-matrix multiply is fast on GPU
– Spin Images

Spin-image matching component: parallel over model and scene
points, reduction over image pixels
Geometric consistency component: parallel over pairs of point
correspondences

– SAR/Tomography
• Continuing advances in GPU hardware and stream software will enable

single chip solutions for a large class of STAP airborne applications and
similarly sized problems

	DARPA STAP-BOY:�Fast Hybrid QR-Cholesky Factorization and Tuning Techniques for STAP Algorithm Implementation on GPU Architectures
	STAP-BOY: Concept
	Applications Pull
	 CPUs vs. GPUs
	Slide Number 5
	Outline
	Productivity
	Weight Solver Methods
	Shared-row Covariance Method: Algorithm Steps
	Shared-Row Covariance Method: Low-Rank Updates
	Total Speedup for the STAP Algorithm
	Interpreting Range with Spin-Image Mapping
	Spin-Image Surface Mapping
	Parallel Processing Opportunities
	Achieving Speedup
	GPU Speedup & Timing
	Additional results
	Summary

