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Emerging capabilities in stream and multi-core computation along with high speed 
memory bandwidths in commercial graphics processor (GPU) architectures are enabling 
breakthrough low cost and low power teraflop computing solutions to DoD embedded 
computing challenges.  Under the DARPA MTO STAP-BOY program, SAIC and Duke 
University have been developed mappings of complex signal processing algorithms to 
GPU architectures in cooperation with commercial graphics processor companies, with 
the focus on STAP applications for radar adaptive beamforming.  The first phase of the 
program was focused on benchmarking algorithms mapped to GPUs based on emergent 
stream computing and graphics shader APIs.  The conclusions reached in the STAP-BOY 
phase one program is that the compute architecture and stream and graphics APIs lead to 
order(s) of magnitude power/watt/$ improvements over CPU and DSP solutions, with 
high productivity in application development.  
 
Under the DARPA STAP-BOY program, the implementation of a prototype radar STAP 
algorithm in work done under the DARPA STAP-BOY program was completed, using 
the close to the metal, stream programming (Peakstream, ATI-CTM, and NVIDIA), and 
traditional graphics APIs, and trade implementations of the STAP algorithm for fast 
range adaptive STAP weight updates.  In addition to the weight computation, that 

beamforming is also a natural match 
for graphics architectures.  With the 
memory and multi-core architecture 
of the graphics processor, a single 
chip graphics chip solution is 
available for a large class of STAP 
airborne radar applications with 
application to similar size problems 
with different sensor modalities.  In 
our study, we focused particularly 
on the case of 128 degrees of 
freedom for a 16-element airborne 
antenna array, with 16 spatial taps, 
2 time taps and 4 Doppler taps.  Our 
initial results are shown in figure 1.  
Finally, our presentation shows the 
productivity enhancement achieved 
by exploit the graphics processor 
memory and compute cores. In our 
phase one work, we focused on fast 
range adaptive weight updates that 
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Figure 1. Initial STAP-BOY QR Benchmark 
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were updated once per range gate in he prototype radar airborne surveillance application 
that requires the covariance matrix to be factorized once per range gate with 128 degrees 
of freedom.. In addition, in our presentation, we will show the results in this briefing that 
trade QR factorization implementations utilizing low cost commercial API and tools in an 
integrated development environment developed by SAIC to rapidly achieve high 
throughput computational performance. 
 
 A key innovation in our development of the STAP algorithm mapping to the graphics 
processor architecture is the mathematical reorganization of the STAP algorithm to 
highest computational performance.   In our approach, we will also show the advantage 
of the batch processing formulation of weight updates on the GPU as part of the solver 
that maps naturally to the GPU cores. The key approach to the batch processing 

formulation is to realize that 
a core factorization can be 
done for multiple updates 
and low ranks update for 
additional solutions.  The 
size of the core matrix 
factorization is tuned to the 
performance of the graphics 
processor chip with software 
tuning tools that have been 
developed by SAIC. 
 
In addition to the covariance 
matrix factorization for 
weight solution, the 128 
weights for our prototype 
problem are stored for each 
range gate after 
computation, retrieved from 
graphics memory, and 
applied without leaving the 
graphics processor memory.  
In order to benchmark the 

fully adaptive weight solution problem we show that the memory bandwidth from the 
processor cores to graphics memory can achieve over 20Gbytes/second when the number 
of computations exceed 4 times the number of memory fetches.  The parallel 4x1 floating 
point vector processor architecture in the graphics shader responsible for RGBA texturing 
provides a convenient approach to breaking up feedforward computational problems into 
factors or 4.  Our initial results for the fully adaptive beamforming application are shown 
in figure 3 using the graphics API, and over 64 GFLOPs based on initial benchmarks 
with the stream programming APIs when the fully adaptive beamforming problem is 
treated as a matrix-matrix multiply. 
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•128x1 vector formed by 4x2 window across 16 channels
•128x1 weight vector stored in memory
•Output is dot-product of weight vector with data vector
•Data window moves for each pixel in range doppler map

 
Figure 2. Initial STAP-Beam Forming Performance 

 



A challenge that faces 
mapping new algorithms to the 
multi-core graphics processor 
applications is ease of 
algorithm mapping and 
software development.  In the 
phase one STAP-BOY 
program, SAIC developed 
over 40,000 lines of code and 
an development framework 
that interfaces with the 
existing commercial APIs and 
software packages that enables 
cross platform and cross 
operating system compilation 
as shown in figure 3. With the 
application development 
framework developed in 
STAP-BOY, productivity is 
shown that over 90% of the 
computational throughput 
performance in 
implementation can be 
achieved within a 2-week 
development cycle. 
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Figure 3. STAP-BOY SGPU Development 
Environment 

 
In phase two of the DARPA STAP-BOY program, we are focusing on the mapping of 
large scale end-to-end video and 3D radar surveillance applications in a multi-GPU 
embedded computing architecture for embedded applications. In addition to our 
presentation, we will also have a demonstration of 3D object recognition on prototype 
STAP-BOY GPU hardware and comparison to a CPU based implementation.. 




