
FFTs of Arbitrary Dimensions on GPUs

Xiaobai Sun and Nikos Pitsianis

Department of Computer Science, Duke University, Durham, NC 27708

Introduction

We present the fast Fourier transform (FFT), of ar-
bitrary dimensions, on the graphics processing unit
(GPU). The FFT on GPUs exploits the architecture
in its image processing capability, as well as its partic-
ular graphics/image rendering capacity. It also cou-
ples the processing and rendering furthermore. We
view the GPU as a special architecture that sup-
ports fine-granularity, two-dimensional (2D) memory
accesses at the level of application programming inter-
face (API). The unique architectural features are uti-
lized by mathematical and algorithmic means richly
associated with the FFT, which has an important role
in signal and image processing and in scientific com-
puting in general.

At the kernel of the FFT on GPUs, i.e., at the level
innermost to the the native architecture, are the prim-
itive array operations for the 2D FFT, instead of the
1D FFT. Basically, the 2D array operations have nat-
ural mappings to the architecture by their joint po-
tential in performance. A lower or higher dimensional
FFT is described in terms of the kernel operations,
in order to exploit the architecture at the application
programming level. This algorithmic abstraction of
the operation primitives and their compositions en-
ables, especially, the 2D twiddle scaling, which uses
less memory space, and the 2D bit-reversal permu-
tation, which manifests the unique GPU feature in
memory access. The 2D FFT on GPUs is detailed
in [3], where mixed-radix factorizations are also used
to further utilize the memory resource. In this paper
we turn the focus onto FFTs of other dimensions on
GPUs. We describe the FFT reformulation and data
mappings. We provide experimental results to demon-
strate that the 2D FFT performance is conveyed to
the other FFTs as well.

The One-Dimensional FFT

Consider the 1D FFT, y = Fm x, where Fm is the
m×m discrete Fourier transform (DFT). Assume that
m is a composite number, m = p ∗ q, for some non-
trivial natural numbers p and q. Otherwise, augment

m to the least composite number above. Let Xpq be
the p × q array created by folding the input vector x

row-wise. The k-th row of Xpq is the k-th segment of
consecutive q elements in x, k = 1, · · · , p. Let Ypq be
the p × q array from which the transformed (output)
vector y is read out column-wise. Then, we have the
following mathematical reformulation of the 1D FFT,

Ypq = [(FpXpq) � Wpq] Fq

where � denotes the Hadamard (or element-wise)
product, Wpq is the p×q scaling array formed by fold-
ing column-wise the twiddle vector between the factor
associated with Fp and that with Fq . When the ele-
ments of the scaling array Wpq are all set to 1, Y is
the 2D FFT of X . In other words, a simple flag can
be set to invoke or skip the twiddle factor for the 1D
FFT or the 2D FFT, respectively.

There are additional advantages in the reformu-
lated FFT. The twiddle array Wpq is a submatrix of
Fm itself. Therefore, there are many ways to rep-
resent the twiddle array compressively in space and
expand them efficiently during the computation. Fur-
thermore, a row-wise permutation of (FpXpq) � Wpq

can be applied to FpXpw and Wpq separately. This
means that a row-wise permutation, such as the bit-
reversal permutation, can be pre-extracted from Fp

and Wpq . Consider the following arrangement,

Ypq = Pr[(P
T
r FpXpq) � (PT

r Wpq)] (FqP
T
c)Pc,

where the twiddle array is permuted in rows, the outer
permutations Pr and Pc may be the bit reversals as-
sociated with p and q, respectively. On GPUs, they
can be done simultaneously and efficiently, see [3] for
detail.

Multi-dimensional FFTs

Consider the 3D FFT first. There are more varieties
in reformulating a 3D FFT in terms of 2D array oper-
ations. For example, we may reformulate the `×m×n

FFT in terms of (`m)×n array operations. The input
and output data cubes X`,m,n and Y`,m,n are mapped

1

to the 2D arrays X(`m),n and Y(`m),n, respectively, on
the GPU. Specifically, the k-th cross section of the in-
put cube along the last dimension, becomes the k-th
column of X(`m),n. The output cube is mapped in
the same way. It is then computed by the following
reformulation

Y(`m),n = F̃`mX(`m),nFn,

where F̃`m = Fm ⊗ F` is the DFT matrix F`m,

F`m = (Fm ⊗ I`) Dw (Im ⊗ F`) P`,m,

with the twiddle scaling factor Dw and the stride-
m permutation P`,m replaced by the identity matrix
I`m. Similar to the reformulation of the 1D FFT,
the setting of the twiddle scalars distinguishes the 3D
FFT from the 2D FFT and associates them at the
same time in the framework of 2D array operations.

The scheme of cross-dimension aggregation alone
may result in 2D data arrays that are not well bal-
anced dimensionwise. For instance, a 192×6144 data
array may not be accommodated by the available
buffer space as the reshaped 1152×1024 array may.
The complementary scheme is dimensional splitting
as used for the 1D FFT in the previous section. For
instance, when the input and output data cubes are
well balanced dimensionwise, we may factor the mid-
dle dimension m by m1 and m2, i.e., m = m1m2, and
then aggregate (`, m1, m2, n) into (`m1, m2n).

The general scheme may be described as dimen-
sionwise splitting, ` = `1`2, m = m1m2, and
n = n1n2, followed by cross-dimension aggregation,
(`1m1n1, `2m2`2). The general specification of the
data mapping is as follows. Any row or column in
the 2D array, X`1m1n1,`2m2n2

, corresponds to a sub-
cube of the data cube X`,m,n. We note also that stride
permutations can be incorporated into the scheme so
that a subarray corresponds to the data cube at a
different granularity level.

The same scheme of splitting, aggregation and per-
mutations can be straightforwardly extended to any
other multi-dimensional FFT.

Experiments

The FFT on GPUs is implemented at the applica-
tion programming level using the language Cg and the
graphics library OpenGL. In Table 1 we show the ex-
ecution time in milliseconds of three FFTs on square
data arrays. The 3D FFT arises from data analysis in
a particular hyper-spectral imaging application. The
performance of the 2D FFT is determined by and re-
mains the same as the primitive array operations on

Table 1: Execution time in milliseconds for three
FFTs on two GPUs, in single-precision floating point
arithmetic

GPUs nVIDIA ATI
FFTs 7900GT X1900XTX
1×262, 144 8 8
1024×1024 35 36
512×512×16 153 158

GPUs. And it is transported to the other FFTs as
well.

Finally, we add a few comments. Since its first re-
port in [1], the FFT is implemented and optimized in
performance almost on every computer architecture,
see [2, 4] for instance. There exist other 1D or 2D
FFT implementations on GPUs [5]. Here, we use the
GPU as a prototype for architectures supporting 2D
memory access at fine granularity. We consider the
FFT on GPUs from both the application user’s view-
point and the developer’s viewpoint. We do not fix
the number of dimensions to 1 or 2, nor limit each di-
mensional size to a power of 2. The code is developed
quickly at the API level, easily readable, and portable
to any GPU that supports Cg and OpenGL. Moreover,
we consider it very important to specify clearly and
systematically the input and output data mappings.

References

[1] J. W. Cooley and J. W. Tukey. An algorithm for
the machine calculation of complex Fourier series.
Mathematics of Computation, 19:297–301, April
1965.

[2] M. Püschel et. al. SPIRAL: Code generation for
DSP transforms. Proceedings of the IEEE, special
issue on ”Program Generation, Optimization, and
Adaptation”, 93(2):232–275, 2005.

[3] T. Fridrich, N. Pitsianis, and X. Sun. Mixed-Radix
2D FFT on GPUs. Technical Report CS-2007-02,
Duke University, 2007.

[4] M. Frigo and S. G. Johnson. The Design and Im-
plementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, February 2005.

[5] Kenneth Moreland and Edward Angel. The FFT
on a GPU. In HWWS ’03: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Con-
ference on Graphics Hardware, pages 112–119,
2003.

2

