Benchmarking the NVIDIA 8800GTX
with the CUDA Development Platform

Michael McGraw-Herdeg, MIT
Douglas P. Enright, The Aerospace Corporation

B. Scott Michel, The Aerospace Corporation

@ THE AEROSPACE

©2007 The Aerospace Corporation CORPORATION

Outline

Introduction

The G8X GPU

Time-Domain Finite Input Response Filter (TD-FIR)

Frequency-Domain Finite Input Response Filter (FD-FIR)

Complex QR Decomposition

CUDA Programmability

Conclusions and Acknowledgments

@ THE AEROSPACE
CORPORATION

Introduction

* Wish to examine performance characteristics of
newly available data-parallel architectures

* HPEC Challenge Benchmark Suite CPU application
— Finite impulse response filter i
— Time-Domain: 15x speedup CUDA Libraries
— Frequency-Domain (1D FFT): 35x speedup il '
— QR decomposition CUDA Runtime
— Data-interdependent matrix factorization i \
— 2.5x speedup CUDA Driver
° g)l:DA platform: C on a GPU + Runtime Library]

GPU
— Compute Unified Device Architecture

— Intuitive, thread-level parallelization with CUDA Software Stack

SIMD operations _
— GeForce 8 Series/Quadro FX/Tesla Fig. 1-3 NVI.DIA Cl.JDA
Programming Guide

@ THE AEROSPACE
CORPORATION

Outline

Introduction

The G8X GPU

Time-Domain Finite Input Response Filter (TD-FIR)

Frequency-Domain Finite Input Response Filter (FD-FIR)

Complex QR Decomposition

CUDA Programmability

Conclusions and Acknowledgments

@ THE AEROSPACE
CORPORATION

The G8X GPU: Architecture

* Sixteen SIMD 1350 MHz pevics
“multiprocessors” R
— 16KB fast shared memory attprocassora

— 64KB constant memory
— 8KB texture memory
— 8192 total registers | p——

— 8 chained SIMD
processors

Processor 1 Processor2 *** ProcessorM

— Single precision floating
point

— Tesla to have double
precision
* 768MB of GDDR3 global

device memory Hardware Model, Fig. 3-1 NVIDIA

* PCIx16 bus adapter to host CUDA Programming Guide
system

@ THE AEROSPACE
CORPORATION

The G8X GPU: What Software People See

* Developers code in a C-extended language and call “kernels” (inlined
device functions)

— 32 blocks of 256 threads each: kernel<<<32, 256>>>(args);
— Thread scheduling is tightly interleaved and invisible to developers

— Reading global memory is slow (hundreds of cycles), so the
challenge is interleaving data accesses appropriately

* On-card computations are standard single-precision floating point
arithmetic

— Addition, multiplication, division, square root, trig functions
* Mathematical library support
— Vector & Matrix Linear Algebra: CUBLAS

— Fast Fourier Transform: CUFFT

@ THE AEROSPACE
CORPORATION

Outline

Introduction

The G8X GPU

Time-Domain Finite Input Response Filter (TD-FIR)

Frequency-Domain Finite Input Response Filter (FD-FIR)

Complex QR Decomposition

CUDA Programmability

Conclusions and Acknowledgments

@ THE AEROSPACE
CORPORATION

Time-Domain Filter: Approach

* Convolve signal and filter: for each filter element, multiply by entire

signal and add to an element of the result vector

* In CUBLAS, the inner loop is just:
cublasCaxpy(signalsize, (cuComplex) filterdata, (cuComplex*) signalptr,
1, (cuComplex*) resultptr, 1);

Filter slides along

reference to form

dot products

3 2 1 0

I I I I

X X X X
AR A B

Single Filter (example size 4)

* Number of Operations:
K - Filter size

N — Input size

M — Number of filters

Total FOPs: ~8x M x N x K

0o | 1 2 | 3| 4|5 |6 |7 N-2 | N-1
Reference Input + 9UtPUt point
data \
0 1 2 3 4 5 7 L-3 | L-2 | L1

* Output Size:
L=N+K-1

Diagram from “Exploring the Cell with HPEC Challenge Benchmarks”, S. Sacco,
G. Schrader, J. Kepner, HPEC 2006

@ THE AEROSPACE
CORPORATION

Rate (gigaflops per second)

* Signal length performance analysis

Time Domain Results

— GPU performance strongly dependent on signal length
— 4x length, 4x perf. (ratio 1,3,4 to 2), 8x length, 12x perf. (5 to 2)

* Filter size performance analysis

— GPU performance relatively invariant to filter size (1,3,4)

* Reference CPU system is a dual-core Athlon x64 4200+ (2210MHz)

I

I CPU time-domain finite impulse response

[] GPU TDFIR

1

2

3

Test Cases

@

28 n:32768_k:4096
THE AEROSPACE

CORPORATION

Outline

Introduction

The G8X GPU

Time-Domain Finite Input Response Filter (TD-FIR)

Frequency-Domain Finite Input Response Filter (FD-FIR)

Complex QR Decomposition

CUDA Programmability

Conclusions and Acknowledgments

@ THE AEROSPACE
CORPORATION

Frequency-Domain Filter: Approach

* Time-domain convolution is frequency-domain multiplication:
— Convolution Theorem: FFT -> multiply -> FFT
— M: number of filter/signal pairs, N: signal length, K: filter length
— Operation count:
— Time-domain: 8*M*N*K flops
— Frequency domain: M*(10*N*log2(N)+8*N)) flops.

— Frequency-domain approach optimal for large filters

* CUFFT library does all the work!

* Series approach: convolve one signal at a time, attacking them
sequentially

* Parallel approach: convolve all the signals at once using batching

@ THE AEROSPACE
CORPORATION

Rate (gigaflops per second)

Frequency Domain Results: Series Computations

* Signal length performance analysis

— Long signals (tests 1,3,4): GPU calculation 1.5-16x faster than CPU

— Short signal (test 2): CPU is faster by a factor of 2

* Filter size performance analysis

— GPU performance is fairly invariant to filter size (tests 1,3,4)

5 T |

B CPU frequency domain finite impulse response

] GPU FDFIR series (calculation)
4 |- B GPUFDEIRseriesotal) ... i
3 __ —
2 ... —
1 ___ —
0 m D e | o U

m:64_n:4096_k:128 m:20_n:1024_k:12 m:128_n:4096_k:4096 m:512_n:4096_k:512 m:128 n:32768_k:4096

1 2 3 4

Test Cases

5

@

THE AEROSPACE
CORPORATION

Throughput (gigaflops/second)

Frequency Domain Results: Parallel Computations

* Parallel FFT Performance

— GPU-only calculation 35x faster than CPU (test 3)

— Large FFTs are serialized (test 5)

* PCI bus hampers overall performance

— One-half of GPU-only performance lost to PCI bus latency (tests 1,3,4,5)

16 | |
Il CPU frequency-domain finite impulse response

14 |- - - -l - 6PU FDFIR series (caleulation) - - - -~ - --------------oomee oo B e
[GPU FDFIR series (total)

B [l GPU FDFIR parallel (calculation)

m:64_n:4096_k:128
1

m:20_n:1024_k:12

2

m:128_n:4096_k:4096

3

Test Cases

m:512_n:4096_k:512

4

5

@

m:128_n:32768_k:4096

THE AEROSPACE
CORPORATION

Outline

Introduction

The G8X GPU

Time-Domain Finite Input Response Filter (TD-FIR)

Frequency-Domain Finite Input Response Filter (FD-FIR)

Complex QR Decomposition

CUDA Programmability

Conclusions and Acknowledgments

@ THE AEROSPACE
CORPORATION

Complex QR Decomposition: Approach

X X X x x| [x x x x x X X X X| |[x x x Xx Xx
X x x x x| [x x x x x x x x x| |0 x x x x
X x x x x| |[x x x x x x x x x| /00 x x x
X x x x x| |[x x x x x x x x x|/ [0 0 0O x x
X X X x x|=[x x x x x x x x x[¥0 0 0 0 «x
X x x x x| |x x x x x x x x x/ |00 O 0 O
X x x x x| |[x x x x x x x x x|/ {00 0 0 O
X x x x x| |x x x x x x x x x/ {00 0 0 O
X x x x x| |x x x x x x x x x/ {00 0 0 O

A: mxn Q: mxm R: mxn

Hy—
Q"Q=I,

A=QR via Fast Givens QR

— Givens rotations to eliminate one element of A at a
time

— R: computed from A by eliminations

— Q: computed as a by product of eliminating A

Each Givens rotation modifies two rows; some
parallelization possible

The Sameh-Kuck pattern (top right) allows up to n
concurrent rotations

WLI3[IS {17119 |21)23 *

10[12[14 (16 |18 |20]|22]|24]| *

HEI3LIS 1719212325 *

10[12 14116 |18 |20|22|24 26| *

21 |23{25{27| *

8110|1214]16 |18 20|22 (242628 %*

—Invjuislo|lo|~N]lo]| W

a|lo|~|o|e®
©
w
I
S
©

719|135 [17(i9]21({23[25{27 |29 *

Image from A. H. Sameh,
D. J. Kuck, “On Stable
Parallel Linear System
Solvers,” Journal of the
ACM January 1978

@ THE AEROSPACE
CORPORATION

Rate (gigaflops per second)

Complex QR Decomposition: Results

* CPU performance is constant across test sizes
* GPU performs much better on large tests (about 2.5x faster)

* Data interdependence is less problematic for large matrices

14 | I
B CPU QR factorization
) S [GPUQR factorization | . 1. b
1 __
e e R EEEERE NN EERECTES NN CERPRCETE BN EEPERET BN EERERPRES
0.6 [] [b]

m:500_n:100 m:180_n:60 m:150_n:150 m:1000_n:1,000 m:1500_n:1,000 m:2000_n:1000 m:2000_n:2000
1 2 3 4 5 6 7

Test Cases @ THE AEROSPACE
CORPORATION

An Alternative QR Approach

* A pipelined Givens pattern theoretically twice as fast as Sameh-Kuck:

o[ofefeje]e o[eJeJeje]e] cycle | steps | set
15 e|e|e|e|e 35e|le|e|e|e
14170 |0|0|@ 293G e|e|o|e 1 1'2 1
131619 e|e]|e 283541(e|e]e 213,4,5
12151821je|e 22303742 | @
1114172023 ¢| PRI1R83BALA5 e 316,7,8,9
101316192225 162331384346 410, 11, 12, 13, 14
9121518212 152128354145
i 1(7;20 11[1724323%14 S | 15, 16, 17, 18, 19, 20
71013161 101521283541,
ALV EED 71218053340 6 | 21, 22, 23, 24, 25, 26,27 | 2
5[811 1;}7 o 6 1015212835 7| 28, 29, 30, 31, 32, 33, 34
4|710131619 [4[8]13192634 29 .
37619 121518 3761015212 8 | 35, 36, 37, 38, 39, 40 3
2|5]18 111417 2(5[9[142027 9 | 41, 42, 43, 44
[

1|4|7[101316 1|3]6{101521 10 | 45, 46

(a) PGS-1 (b) PGS-2

* But it won't work with CUDA.

(c) PGS-2cycles

Diagram from “Pipeline
Givens sequences for
computing the QR
decomposition on a EREW
PRAM”, M. Hofmann, E. J.
Kontoghiorghes, Parallel
Computing, Vol. 32 Issue 3,
March 2006

— Pipelining requires either fast thread synchronization or fast fine-
grained operations between kernels

— The computation at each step is too small

@ THE AEROSPACE
CORPORATION

Outline

Introduction

The G8X GPU

Time-Domain Finite Input Response Filter (TD-FIR)

Frequency-Domain Finite Input Response Filter (FD-FIR)

Complex QR Decomposition

CUDA Programmability

Conclusions and Acknowledgments

@ THE AEROSPACE
CORPORATION

CUDA Programmability

* Solid NVIDIA code base solves many programming issues

— “Starter code” examples in SDK demonstrate common GPU
computation patterns

— CUDA includes “malloc” and “memcpy” clones for on-card

memory; developers can easily transfer between card &
host memory

— CUFFT, CUBLAS libraries accelerate computation without
device code

* Source line of code counts:

C CUDAC

TDFIR 122 350 [TDFIR + FDFIR]
FDFIR 210

QR 238 369

* Benchmark coding time equivalent in C, CUDA: O(days)

@ THE AEROSPACE
CORPORATION

How to Get High Performance

Parallelizing at the thread level takes only a little practice; optimizing
thread utilization requires more thought

— In CUDA's SIMD architecture, thread execution is hidden
— high-level control over number of threads and “thread blocks”
— Partitioning data is the real challenge

— coalesced memory reads and writes are much faster than
random ones

GPU data-parallel architecture designed for high
(computations/memory operations) ratio

Asynchronous library calls are useful - CUBLAS, CUFFT

Work on large data sets, but in small bites that can fit in shared
memory

Avoid need for synchronization
— A __syncthreads() primitive exists, but is severely limited

— Threads are too tightly interwoven to be managed by developers

@ THE AEROSPACE
CORPORATION

Future Directions

Expanded libraries expected

— CUBLAS is missing many complex operations

— Handrolled Givens operations used in QR are probably not optimal
Atomic operations are coming

— Atomic integer operations available in Compute Capability 1.1, which
currently runs on newer, slower cards

— Atomic floating-point operations in the future?
Double precision floating-point by end of ‘07
Transparent multi-GPU computation with Tesla
More support for asynchronous actions expected
— Goals: send data to a running kernel, multiple concurrent kernels

— The GPU array as a mature multicore platform

@ THE AEROSPACE
CORPORATION

Outline

Introduction

The G8X GPU

Time-Domain Finite Input Response Filter (TD-FIR)

Frequency-Domain Finite Input Response Filter (FD-FIR)

Complex QR Decomposition

CUDA Programmability

Conclusions and Acknowledgments

@ THE AEROSPACE
CORPORATION

Conclusions

* CUDA brings C to a multiprocessor architecture
* Pros:
— It’s easy to use and program
— Extensive, responsive support base, including developers
— NVIDIA is actively supporting the project
— CUBLAS and CUFFT are remarkably successful
— Handmade SIMD code yields impressive results
* Cons:
— Performance depends heavily on the algorithm
— Handmaking SIMD code requires learning a “new” style
— Mostly exploiting capabilities is easy
— Fully exploiting capabilities is difficult

@ THE AEROSPACE
CORPORATION

Acknowledgments

The Aerospace Corporation Summer Internship Program
The Aerospace Corporation IR&D Program
Computer Systems Research Department
— Director Stuart Kerr
Computers and Software Division
NVIDIA Corporation

All trademarks, service marks, and trade names are the property

of their respective owners.

@ THE AEROSPACE
CORPORATION

