
Benchmarking the NVIDIA 8800GTX
with the CUDA Development Platform

Michael McGraw-Herdeg, MIT

Douglas P. Enright, The Aerospace Corporation

B. Scott Michel, The Aerospace Corporation

©2007 The Aerospace Corporation

Outline

• Introduction

• The G8X GPU

• Time-Domain Finite Input Response Filter (TD-FIR)

• Frequency-Domain Finite Input Response Filter (FD-FIR)

• Complex QR Decomposition

• CUDA Programmability

• Conclusions and Acknowledgments

Introduction

• Wish to examine performance characteristics of
newly available data-parallel architectures

• HPEC Challenge Benchmark Suite
– Finite impulse response filter

– Time-Domain: 15x speedup
– Frequency-Domain (1D FFT): 35x speedup

– QR decomposition
– Data-interdependent matrix factorization
– 2.5x speedup

• CUDA platform: C on a GPU + Runtime Library
for

– Compute Unified Device Architecture
– Intuitive, thread-level parallelization with

SIMD operations
– GeForce 8 Series/Quadro FX/Tesla

CUDA Software Stack
Fig. 1-3 NVIDIA CUDA
Programming Guide

Outline

• Introduction

• The G8X GPU

• Time-Domain Finite Input Response Filter (TD-FIR)

• Frequency-Domain Finite Input Response Filter (FD-FIR)

• Complex QR Decomposition

• CUDA Programmability

• Conclusions and Acknowledgments

The G8X GPU: Architecture

• Sixteen SIMD 1350 MHz
“multiprocessors”
– 16KB fast shared memory
– 64KB constant memory
– 8KB texture memory
– 8192 total registers
– 8 chained SIMD

processors
– Single precision floating

point
– Tesla to have double

precision
• 768MB of GDDR3 global

device memory
• PCIx16 bus adapter to host

system

Hardware Model, Fig. 3-1 NVIDIA
CUDA Programming Guide

The G8X GPU: What Software People See

• Developers code in a C-extended language and call “kernels” (inlined
device functions)

– 32 blocks of 256 threads each: kernel<<<32, 256>>>(args);

– Thread scheduling is tightly interleaved and invisible to developers

– Reading global memory is slow (hundreds of cycles), so the
challenge is interleaving data accesses appropriately

• On-card computations are standard single-precision floating point
arithmetic

– Addition, multiplication, division, square root, trig functions

• Mathematical library support

– Vector & Matrix Linear Algebra: CUBLAS

– Fast Fourier Transform: CUFFT

Outline

• Introduction

• The G8X GPU

• Time-Domain Finite Input Response Filter (TD-FIR)

• Frequency-Domain Finite Input Response Filter (FD-FIR)

• Complex QR Decomposition

• CUDA Programmability

• Conclusions and Acknowledgments

Time-Domain Filter: Approach

• Convolve signal and filter: for each filter element, multiply by entire
signal and add to an element of the result vector

• In CUBLAS, the inner loop is just:
cublasCaxpy(signalsize, (cuComplex) filterdata, (cuComplex*) signalptr,
1, (cuComplex*) resultptr, 1);

Diagram from “Exploring the Cell with HPEC Challenge Benchmarks”, S. Sacco,
G. Schrader, J. Kepner, HPEC 2006

Time Domain Results
• Signal length performance analysis

– GPU performance strongly dependent on signal length
– 4x length, 4x perf. (ratio 1,3,4 to 2), 8x length, 12x perf. (5 to 2)

• Filter size performance analysis
– GPU performance relatively invariant to filter size (1,3,4)

• Reference CPU system is a dual-core Athlon x64 4200+ (2210MHz)

 1 2 3 4 5

 Test Cases

Outline

• Introduction

• The G8X GPU

• Time-Domain Finite Input Response Filter (TD-FIR)

• Frequency-Domain Finite Input Response Filter (FD-FIR)

• Complex QR Decomposition

• CUDA Programmability

• Conclusions and Acknowledgments

Frequency-Domain Filter: Approach

• Time-domain convolution is frequency-domain multiplication:
– Convolution Theorem: FFT -> multiply -> FFT
– M: number of filter/signal pairs, N: signal length, K: filter length
– Operation count:

– Time-domain: 8*M*N*K flops
– Frequency domain: M*(10*N*log2(N)+8*N)) flops.

– Frequency-domain approach optimal for large filters

• CUFFT library does all the work!
• Series approach: convolve one signal at a time, attacking them

sequentially
• Parallel approach: convolve all the signals at once using batching

 1 2 3 4 5

 Test Cases

Frequency Domain Results: Series Computations
• Signal length performance analysis

– Long signals (tests 1,3,4): GPU calculation 1.5-16x faster than CPU
– Short signal (test 2): CPU is faster by a factor of 2

• Filter size performance analysis
– GPU performance is fairly invariant to filter size (tests 1,3,4)

Frequency Domain Results: Parallel Computations

• Parallel FFT Performance
– GPU-only calculation 35x faster than CPU (test 3)
– Large FFTs are serialized (test 5)

• PCI bus hampers overall performance
– One-half of GPU-only performance lost to PCI bus latency (tests 1,3,4,5)

 1 2 3 4 5

 Test Cases

Outline

• Introduction

• The G8X GPU

• Time-Domain Finite Input Response Filter (TD-FIR)

• Frequency-Domain Finite Input Response Filter (FD-FIR)

• Complex QR Decomposition

• CUDA Programmability

• Conclusions and Acknowledgments

Complex QR Decomposition: Approach

• A=QR via Fast Givens QR

– Givens rotations to eliminate one element of A at a
time

– R: computed from A by eliminations
– Q: computed as a by product of eliminating A

• Each Givens rotation modifies two rows; some
parallelization possible

• The Sameh-Kuck pattern (top right) allows up to n
concurrent rotations

A: mxn Q: mxm R: mxn
QHQ=Im

Image from A. H. Sameh,
D. J. Kuck, “On Stable
Parallel Linear System
Solvers,” Journal of the
ACM January 1978

 1 2 3 4 5 6 7

 Test Cases

Complex QR Decomposition: Results

• CPU performance is constant across test sizes

• GPU performs much better on large tests (about 2.5x faster)

• Data interdependence is less problematic for large matrices

Diagram from “Pipeline
Givens sequences for
computing the QR
decomposition on a EREW
PRAM”, M. Hofmann, E. J.
Kontoghiorghes, Parallel
Computing, Vol. 32 Issue 3,
March 2006

An Alternative QR Approach
• A pipelined Givens pattern theoretically twice as fast as Sameh-Kuck:

• But it won't work with CUDA.

– Pipelining requires either fast thread synchronization or fast fine-
grained operations between kernels

– The computation at each step is too small

Outline

• Introduction

• The G8X GPU

• Time-Domain Finite Input Response Filter (TD-FIR)

• Frequency-Domain Finite Input Response Filter (FD-FIR)

• Complex QR Decomposition

• CUDA Programmability

• Conclusions and Acknowledgments

CUDA Programmability

• Solid NVIDIA code base solves many programming issues
– “Starter code” examples in SDK demonstrate common GPU

computation patterns
– CUDA includes “malloc” and “memcpy” clones for on-card

memory; developers can easily transfer between card &
host memory

– CUFFT, CUBLAS libraries accelerate computation without
device code

• Source line of code counts:

 C CUDA C
TDFIR 122 350 [TDFIR + FDFIR]
FDFIR 210

QR 238 369
• Benchmark coding time equivalent in C, CUDA: O(days)

How to Get High Performance

• Parallelizing at the thread level takes only a little practice; optimizing
thread utilization requires more thought

– In CUDA's SIMD architecture, thread execution is hidden
– high-level control over number of threads and “thread blocks”

– Partitioning data is the real challenge
– coalesced memory reads and writes are much faster than

random ones
• GPU data-parallel architecture designed for high

(computations/memory operations) ratio
• Asynchronous library calls are useful – CUBLAS, CUFFT
• Work on large data sets, but in small bites that can fit in shared

memory
• Avoid need for synchronization

– A __syncthreads() primitive exists, but is severely limited
– Threads are too tightly interwoven to be managed by developers

Future Directions

• Expanded libraries expected
– CUBLAS is missing many complex operations
– Handrolled Givens operations used in QR are probably not optimal

• Atomic operations are coming
– Atomic integer operations available in Compute Capability 1.1, which

currently runs on newer, slower cards
– Atomic floating-point operations in the future?

• Double precision floating-point by end of '07
• Transparent multi-GPU computation with Tesla
• More support for asynchronous actions expected

– Goals: send data to a running kernel, multiple concurrent kernels
– The GPU array as a mature multicore platform

Outline

• Introduction

• The G8X GPU

• Time-Domain Finite Input Response Filter (TD-FIR)

• Frequency-Domain Finite Input Response Filter (FD-FIR)

• Complex QR Decomposition

• CUDA Programmability

• Conclusions and Acknowledgments

Conclusions
• CUDA brings C to a multiprocessor architecture
• Pros:

– It’s easy to use and program
– Extensive, responsive support base, including developers
– NVIDIA is actively supporting the project
– CUBLAS and CUFFT are remarkably successful
– Handmade SIMD code yields impressive results

• Cons:
– Performance depends heavily on the algorithm
– Handmaking SIMD code requires learning a “new” style
– Mostly exploiting capabilities is easy

– Fully exploiting capabilities is difficult

Acknowledgments

• The Aerospace Corporation Summer Internship Program
• The Aerospace Corporation IR&D Program
• Computer Systems Research Department

– Director Stuart Kerr
• Computers and Software Division
• NVIDIA Corporation

All trademarks, service marks, and trade names are the property

of their respective owners.

