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Abstract

Two HPEC Challenge benchmarks, finite impulse response 
and QR decomposition, were implemented on a NVIDIA 
8800  GTX  graphics  card  using  a  data-parallel 
implementation approach. For the finite impulse response 
filter  bank  benchmark,  a  fast  convolution  FFT-based 
frequency-domain approach on the GPU performed 4 to 35 
times faster than the comparable calculation on a CPU. A 
non-transform  time-domain  approach  outperformed  the 
comparable CPU calculation by a factor of 1.6 to 15. When 
computing  the  QR  decomposition  of  a  complex  matrix, 
GPU computations are consistently 2.5 times faster than the 
CPU.  All  of  these  parallel  algorithms  were  written  in 
NVIDIA's Compute Unified Device Architecture (CUDA), 
a C interface that provides quick, effective parallelization.

Hardware and Software

The NVIDIA 8800 GTX video card has 16 multiprocessors, 
each  composed  of  8  SIMD processors  operating  at  1350 
Mhz [1]. Each multiprocessor has 8192 registers, a 16KB 
parallel data cache of fast “shared memory,” and access to 
768  MB of  GDDR3 “global  memory.”  The card  is  used 
most efficiently in a data-parallel fashion, when the ratio of 
computations  to  memory  access  is  high  and  when many 
computations are performed concurrently.

Table 1: FIR Test Parameters

1 2 3 4 5

N 4096 1024 4096 4096 32768

K 128 12 4096 128 4096

M 64 20 128 512 128

Table 2: FIR Frequency-Domain Test Results

Test 1 2 3 4 5

CPU time (s) 0.12 0.0080 0.24 0.95 2.4

GPU series calculation (ratio) 1.8 0.50 1.6 1.8 16

GPU series total (ratio) 1.5 0.43 1.3 1.5 9.2

GPU parallel calculation (ratio) 26 4.4 35 24 17

GPU parallel total (ratio) 14 3.3 13 13 12

Table 3: FIR Time-Domain Test Results

Test 1 2 3 4 5

CPU time (s) 0.71 0.0052 45 5.6 375

GPU total (ratio) 6.9 1.6 7.4 7.2 15
To conserve space, only CPU time and the ratio of CPU 

time to GPU time are reported. The GPU performs faster 
than the CPU when the reported ratio exceeds one.

The  benchmarks  were  implemented  using  NVIDIA’s 
CUDA SDK, which is a collection of C extensions and a 
runtime library.  CUDA’s functionality  primarily  allows a 
developer to write C functions to be executed on the GPU. 
CUDA also includes memory management and execution 
configuration;  with  CUDA,  a  developer  can  control  the 
number  of  GPU  processors  and  threads  that  are  to  be 
invoked during a function’s execution.

The test system, running Gentoo Linux, contained a dual-
core  Athlon-64  4200+  running  at  2210  Mhz,  2GB  of 
memory, and a PCI Express x16 bus. Each Athlon core had 
128KB of Level 1 cache and 512KB of Level 2 cache. The 
code was compiled with gcc v4.0.4 and nvcc v0.2.1221.

Finite Impulse Response: Benchmark Overview

The FIR benchmark models a set of M filters which operate 
on a set of M distinct input signals of length N. Each filter 
has K coefficients. Signal and filter elements are complex, 
single-precision floating point numbers. The output of filter 
m  {0, 1, ..., M-1} ∈ is given by convolution:

∑
k=0

K−1

xm[ i−k ]wm[k ]for i=0,1,... , N−1 (1)

A  time-domain  implementation of the FIR filter computes 
this convolution directly and uses 8*M*N*K floating-point 
operations. A frequency-domain approach is often preferred 
since convolution in the time domain is  multiplication in 
the  frequency domain,  and  consequently  the  computation 
time does not depend on filter size. This approach computes 
the FFT of the signal and filter, multiplies the transformed 
signal and filter, then inverts the transformation. It requires 
M(10*N*log2N + 8*N) operations [2].

Five sets of test data were chosen, with the first two taken 
from the HPEC benchmark; the parameters are in Table 1.

The FIR filter was implemented on the card in three ways. 
The first, a series approach, performs the frequency-domain 
task one signal at a time, using the card’s FFT capability as 
accessed through NVIDIA’s CUFFT library. The second, a 
parallel  approach,  uses  the  NVIDIA  CUFFT  library’s 
“batch mode” to directly process all the signals at once. The 
third,  a  time-domain  filter,  performs  the  convolution 
directly;  it  uses  NVIDIA's  CUBLAS  library  to  dispatch 
each of the required convolution calculations as a Level 1 
BLAS caxpy operation.

FIR Results

For the CPU, the time recorded in Tables 2 and 3 is that 
reported by the HPEC benchmark. For the GPU, the “total 
ratio” reported in Tables 2 and 3 accounts for both GPU 
computation  time  and  the  cost  of  moving  the  input  and 



output data between the host computer and the card. The 
time required to perform the computations alone, with the 
required data already placed in the card's global memory, is 
reported as the “calculation ratio” in Table 2.

Parallel  computations  consistently  outperform  the  CPU, 
although by a smaller factor in test 2, the short filter case, 
where  most  of  the  data  fits  in  CPU  cache.  Series  GPU 
computations underperform the CPU only in test 2. In test 
5,  where  the  problem  size  is  very  large,  the  series 
algorithm's calculations take only slightly longer than the 
parallel  algorithm,  though  the  total  series  time  remains 
somewhat slower than the total parallel time.

For the time-domain benchmark, Table 3 reports CPU time 
and the ratio of total CPU time to GPU time1. GPU time-
domain computation significantly outperforms the CPU on 
large data sets and it is competitive on the short filter test 
case.  It  is  not  competitive  with  GPU  frequency-domain 
filtering.  In  limited  testing,  GPU  time-domain  filtering 
outperforms the parallel GPU frequency-domain filter with 
large M and N and small K, for instance by a factor of three 
with N=4096, K=12, M=1000.

QR Decomposition: Benchmark Overview

In the QR benchmark,  an  mxn  matrix A is factorized into 
an mxm unitary matrix Q and an upper triangular matrix R. 
The matrices A, Q, and R contain complex, single-precision 
floating point numbers. The following properties hold after 
QR factorization:

A=QR ;QH Q= I (2)

The  HPEC  reference  implementation  performs  QR  via 
Givens rotations.  A Givens rotation selectively zeroes  an 
element of the target matrix A by updating two of its rows. 
In the Fast Givens QR algorithm [3], the rotations necessary 
to triangularize A into R are directly computed into Q.

The parallel  approach used on the  GPU employs Givens 
rotations in the standard Sameh-Kuck concurrency strategy 
[4].  This  pattern  concurrently  zeroes  elements  that  are  a 
knight's move apart; see figure 1 of [4].

Seven sets of test data are parametrized in Table 4; the first 
three sets follow the HPEC QR benchmark.

Table 4: QR Test Parameters

1 2 3 4 5 6 7

M 500 180 150 1000 1000 2000 2000

N 100 60 150 500 1000 1000 2000

Table 5: QR Test Results

Test 1 2 3 4 5 6 7

CPU time (s.) 0.79 0.062 0.087 26 65 120 209

GPU total (ratio) 1.7 0.90 0.81 2.6 2.6 2.4 2.6
CPU time and the ratio of CPU time to GPU time are 

reported. GPU time includes the cost of copying memory 
between card and host; this is less than 1% of the total time.
1In each time-domain test, total GPU time was no more than 7% greater than 
calculation time.

QR Results

On data sets much larger than the CPU's L1 cache, the GPU 
consistently outperforms the CPU by a factor of about 2.5.

Performance asymptotically  twice as fast  as Sameh-Kuck 
should  be  attainable  via  pipelining  [5].  However,  this 
approach was not implemented; the graphics card provides 
limited thread synchronization and no atomicity2, such that 
an effective pipelining approach would reduce the ratio of 
computations to memory access.

CUDA Programmability

The  CUDA  paradigm,  in  which  the  GPU  is  a  SIMD 
processor  array,  makes  an  efficient  tradeoff  between 
general-purpose and specialized computation. A single line 
of code invokes a device function with a specified thread 
organization.  The  card  tightly  interleaves  these  threads’ 
computations  and  memory  accesses.  There  is  little 
complexity overhead: the GPU benchmarks have roughly as 
many lines of code as their HPEC Challenge counterparts.

Data-parallel  design  for  CUDA  follows  well-understood 
SIMD patterns. The key challenges of the architecture are 
structuring  expensive  memory  access  calls  appropriately 
and avoiding complicated synchronization requirements.

The  two  NVIDIA-supplied  libraries  –  CUFFT,  for  fast 
Fourier  transforms,  and  CUBLAS,  a  set  of  basic  linear 
algebra subroutines – were readily adapted to FIR and QR 
respectively. CUFFT peak performance of 35 Gflop/s was 
measured  with  direct  tests,  but  these  frequency-domain 
results represent at best 10 Gflop/s performance. CUBLAS 
is incomplete; the library implements some operations, such 
as Givens rotations, for real numbers but not for complex 
numbers.  These  shortcomings  suggest  avenues  for  future 
exploration.  Nevertheless,  these  libraries  are,  like  CUDA 
itself,  tremendously  convenient;  they  easily,  effectively 
exploit the GPU’s parallel capabilities.
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