
Benchmarking the NVIDIA 8800GTX with the CUDA Development Platform
Michael P. McGraw-Herdeg, Massachusetts Institute of Technology, mherdeg@mit.edu

Douglas P. Enright, The Aerospace Corporation, Douglas.P.Enright@aero.org
B. Scott Michel, The Aerospace Corporation, scottm@aero.org

Abstract

Two HPEC Challenge benchmarks, finite impulse response
and QR decomposition, were implemented on a NVIDIA
8800 GTX graphics card using a data-parallel
implementation approach. For the finite impulse response
filter bank benchmark, a fast convolution FFT-based
frequency-domain approach on the GPU performed 4 to 35
times faster than the comparable calculation on a CPU. A
non-transform time-domain approach outperformed the
comparable CPU calculation by a factor of 1.6 to 15. When
computing the QR decomposition of a complex matrix,
GPU computations are consistently 2.5 times faster than the
CPU. All of these parallel algorithms were written in
NVIDIA's Compute Unified Device Architecture (CUDA),
a C interface that provides quick, effective parallelization.

Hardware and Software

The NVIDIA 8800 GTX video card has 16 multiprocessors,
each composed of 8 SIMD processors operating at 1350
Mhz [1]. Each multiprocessor has 8192 registers, a 16KB
parallel data cache of fast “shared memory,” and access to
768 MB of GDDR3 “global memory.” The card is used
most efficiently in a data-parallel fashion, when the ratio of
computations to memory access is high and when many
computations are performed concurrently.

Table 1: FIR Test Parameters

1 2 3 4 5

N 4096 1024 4096 4096 32768

K 128 12 4096 128 4096

M 64 20 128 512 128

Table 2: FIR Frequency-Domain Test Results

Test 1 2 3 4 5

CPU time (s) 0.12 0.0080 0.24 0.95 2.4

GPU series calculation (ratio) 1.8 0.50 1.6 1.8 16

GPU series total (ratio) 1.5 0.43 1.3 1.5 9.2

GPU parallel calculation (ratio) 26 4.4 35 24 17

GPU parallel total (ratio) 14 3.3 13 13 12

Table 3: FIR Time-Domain Test Results

Test 1 2 3 4 5

CPU time (s) 0.71 0.0052 45 5.6 375

GPU total (ratio) 6.9 1.6 7.4 7.2 15
To conserve space, only CPU time and the ratio of CPU

time to GPU time are reported. The GPU performs faster
than the CPU when the reported ratio exceeds one.

The benchmarks were implemented using NVIDIA’s
CUDA SDK, which is a collection of C extensions and a
runtime library. CUDA’s functionality primarily allows a
developer to write C functions to be executed on the GPU.
CUDA also includes memory management and execution
configuration; with CUDA, a developer can control the
number of GPU processors and threads that are to be
invoked during a function’s execution.

The test system, running Gentoo Linux, contained a dual-
core Athlon-64 4200+ running at 2210 Mhz, 2GB of
memory, and a PCI Express x16 bus. Each Athlon core had
128KB of Level 1 cache and 512KB of Level 2 cache. The
code was compiled with gcc v4.0.4 and nvcc v0.2.1221.

Finite Impulse Response: Benchmark Overview

The FIR benchmark models a set of M filters which operate
on a set of M distinct input signals of length N. Each filter
has K coefficients. Signal and filter elements are complex,
single-precision floating point numbers. The output of filter
m {0, 1, ..., M-1} ∈ is given by convolution:

∑
k=0

K−1

xm[i−k]wm[k]for i=0,1,... , N−1 (1)

A time-domain implementation of the FIR filter computes
this convolution directly and uses 8*M*N*K floating-point
operations. A frequency-domain approach is often preferred
since convolution in the time domain is multiplication in
the frequency domain, and consequently the computation
time does not depend on filter size. This approach computes
the FFT of the signal and filter, multiplies the transformed
signal and filter, then inverts the transformation. It requires
M(10*N*log2N + 8*N) operations [2].

Five sets of test data were chosen, with the first two taken
from the HPEC benchmark; the parameters are in Table 1.

The FIR filter was implemented on the card in three ways.
The first, a series approach, performs the frequency-domain
task one signal at a time, using the card’s FFT capability as
accessed through NVIDIA’s CUFFT library. The second, a
parallel approach, uses the NVIDIA CUFFT library’s
“batch mode” to directly process all the signals at once. The
third, a time-domain filter, performs the convolution
directly; it uses NVIDIA's CUBLAS library to dispatch
each of the required convolution calculations as a Level 1
BLAS caxpy operation.

FIR Results

For the CPU, the time recorded in Tables 2 and 3 is that
reported by the HPEC benchmark. For the GPU, the “total
ratio” reported in Tables 2 and 3 accounts for both GPU
computation time and the cost of moving the input and

output data between the host computer and the card. The
time required to perform the computations alone, with the
required data already placed in the card's global memory, is
reported as the “calculation ratio” in Table 2.

Parallel computations consistently outperform the CPU,
although by a smaller factor in test 2, the short filter case,
where most of the data fits in CPU cache. Series GPU
computations underperform the CPU only in test 2. In test
5, where the problem size is very large, the series
algorithm's calculations take only slightly longer than the
parallel algorithm, though the total series time remains
somewhat slower than the total parallel time.

For the time-domain benchmark, Table 3 reports CPU time
and the ratio of total CPU time to GPU time1. GPU time-
domain computation significantly outperforms the CPU on
large data sets and it is competitive on the short filter test
case. It is not competitive with GPU frequency-domain
filtering. In limited testing, GPU time-domain filtering
outperforms the parallel GPU frequency-domain filter with
large M and N and small K, for instance by a factor of three
with N=4096, K=12, M=1000.

QR Decomposition: Benchmark Overview

In the QR benchmark, an mxn matrix A is factorized into
an mxm unitary matrix Q and an upper triangular matrix R.
The matrices A, Q, and R contain complex, single-precision
floating point numbers. The following properties hold after
QR factorization:

A=QR ;QH Q= I (2)

The HPEC reference implementation performs QR via
Givens rotations. A Givens rotation selectively zeroes an
element of the target matrix A by updating two of its rows.
In the Fast Givens QR algorithm [3], the rotations necessary
to triangularize A into R are directly computed into Q.

The parallel approach used on the GPU employs Givens
rotations in the standard Sameh-Kuck concurrency strategy
[4]. This pattern concurrently zeroes elements that are a
knight's move apart; see figure 1 of [4].

Seven sets of test data are parametrized in Table 4; the first
three sets follow the HPEC QR benchmark.

Table 4: QR Test Parameters

1 2 3 4 5 6 7

M 500 180 150 1000 1000 2000 2000

N 100 60 150 500 1000 1000 2000

Table 5: QR Test Results

Test 1 2 3 4 5 6 7

CPU time (s.) 0.79 0.062 0.087 26 65 120 209

GPU total (ratio) 1.7 0.90 0.81 2.6 2.6 2.4 2.6
CPU time and the ratio of CPU time to GPU time are

reported. GPU time includes the cost of copying memory
between card and host; this is less than 1% of the total time.
1In each time-domain test, total GPU time was no more than 7% greater than
calculation time.

QR Results

On data sets much larger than the CPU's L1 cache, the GPU
consistently outperforms the CPU by a factor of about 2.5.

Performance asymptotically twice as fast as Sameh-Kuck
should be attainable via pipelining [5]. However, this
approach was not implemented; the graphics card provides
limited thread synchronization and no atomicity2, such that
an effective pipelining approach would reduce the ratio of
computations to memory access.

CUDA Programmability

The CUDA paradigm, in which the GPU is a SIMD
processor array, makes an efficient tradeoff between
general-purpose and specialized computation. A single line
of code invokes a device function with a specified thread
organization. The card tightly interleaves these threads’
computations and memory accesses. There is little
complexity overhead: the GPU benchmarks have roughly as
many lines of code as their HPEC Challenge counterparts.

Data-parallel design for CUDA follows well-understood
SIMD patterns. The key challenges of the architecture are
structuring expensive memory access calls appropriately
and avoiding complicated synchronization requirements.

The two NVIDIA-supplied libraries – CUFFT, for fast
Fourier transforms, and CUBLAS, a set of basic linear
algebra subroutines – were readily adapted to FIR and QR
respectively. CUFFT peak performance of 35 Gflop/s was
measured with direct tests, but these frequency-domain
results represent at best 10 Gflop/s performance. CUBLAS
is incomplete; the library implements some operations, such
as Givens rotations, for real numbers but not for complex
numbers. These shortcomings suggest avenues for future
exploration. Nevertheless, these libraries are, like CUDA
itself, tremendously convenient; they easily, effectively
exploit the GPU’s parallel capabilities.

References
[1] NVIDIA Corporation, “NVIDIA CUDA Compute Unified

Device Architecture Programming Guide”, Version 1.0, 23
June 2007.

[2] J. Lebak, A. Reuther, and E. Wong, “Polymorphous
Computing Architecture (PCA) Kernel-Level Benchmarks,”
MIT Lincoln Laboratory project report PCA-KERNEL-1, 13
June 2005.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, 1996.

[4] A. H. Sameh and D. J. Kuck, “On Stable Parallel Linear
System Solvers,” Journal of the ACM, Vol. 25 No. 1, Jan.
1978 p. 81-91.

[5] M. Hofmann and E. J. Kontoghiorghes, “Pipeline Givens
Sequences for computing the QR decomposition on an EREW
PRAM,” Parallel Computing, Vol. 32 No. 3, March 2006.

2Atomic operations on integers exist in CUDA Compute Capability 1.1 on
the newer but slower GeForce 8600 and 8500 cards. Atomic operations on
floating-point numbers are not supported in any existing hardware but are
referenced in the high-level PTX assembler language used by the card.

