
HPEC 2007

Norm Rubin
Fellow

AMD Graphics Products Group
norman.rubin

at amd.com

Overview

•

Why GPU

•

What is the difference between GPU/CPU

•

2900 introduction

•

AMD programming model

GPGPU

•

GPGPU

means not rendering (not visual output)

•

GPUs

are getting closer to CPU

functionality, branches float
operations etc

•

GPUs

have huge floating point performance (2 * 500 gflops)

•

GPUs

are cheaper per mflop

(less then ¼

the cost)

•

Once you need to recode for mult-core, any crazy idea starts
to look promising, improved clock speed is over

•

GPU

has new programming models, new languages, new
issues with optimization

GPU Programming Systems

•

OpenGl

or DirectX

–

CG/HLSL/OpenGl

shading language

•

GPGPU languages

–

Accelerator (MicroSoft

research)

–

Brook (Stanford)

–

CTM

(AMD)

–

CUDA

(NVIDIA)

–

RapidMind

et al

Published results (kernels)

•

Large matrix/vector operations (BLAS)
•

Protein Folding (Molecular Dynamics)
•

Finance modeling
•

FFT (SETI, signal processing)
•

Raytracing
•

Physics Simulation [cloth, fluid, collision,…]
•

Sequence Matching (Hidden Markov Models)
•

Speech/Image Recognition (Hidden Markov Models, Neural
nets)

•

Databases
•

Sort/Search
•

Medical Imaging (image segmentation, processing)
•

And many, many, many more…

Speedup switching to GPU (kernel
code)

•

Simple ports of data parallel programs get 5-10
times faster. Algorithm is data parallel to start,
problem fits on machine

•

Smart ports (make use of tiling/compression, recode
understanding the GPU,

gets 20-100 times faster) –

 change of algorithm.

Why are GPU’s getting faster

•

Why are GPUs getting faster so fast?

•

–

Arithmetic intensity-

The specialized nature of

GPUs

makes it easier to use additional transistors for

computation

•

–

Economics -

Multi-billion dollar video game market

drives innovation

•

-

Games and images do not need the same kind of

accurate results as GPGPU,

so lots of fast but odd

arithmetic, e.g. no denorms

GPU vs CPU – what is the difference?

HD 2900 -

80 nano Barcelona 65 Nano

CPU vs GPU

CPU GPU

5% of area is ALU 40 % of area is ALU

Mem

–

low latency (1/10)
of GPU

Mem

–

high bandwidth (10
times CPU)

Big Cache (10 times GPU) Small Cache

Full IEEE + doubles Partial IEEE

4 cores 64+ cores

Just load stores Fancy memory –

tiling –

arithmetic in memory

10 Times the flops of CPU

Chip design point

•

CPU

Lots of instructions, little data
Out of order exec
Branch prediction

•

Reuse and locality

•

Task parallel

•

Needs OS

•

Complex sync

•

Backward compatible

•

Little functional change

•

Agreement on instructions

•

GPU

Little instructions, lots of data
SIMD
Hardware threading

•

Little reuse

•

Data parallel

•

No OS

•

Simple sync

•

Not backward compatible

•

Fast/frequent functional
change

CPU vs GPU performance

•

Peak performance = 1 float op per cycle

•

Program:

•

series of loads (1-6)
r1 = load (index1)
r2 = load (index2)
r3 = r1 + r2

series of muladds

(1-100)
r4 = r3 * r3

+ r3
r5 = r4 * r4

+ r4

Run over a very large (out-of-cache) data set. (stream comp)
Can you get peak performance/multi-core/cluster?

CPU operation

Wait for memory, gaps prevent peak performance
Gap size varies dynamically
Hard to tolerate latency

One iteration at a time
Single CPU unit
Cannot reach 100%

Hard to prefetch
Multi-core does not help
Cluster does not help
Limited number of outstanding
fetches

GPU THREADS
(lower clock – different scale)

Overlapped fetch and alu
Many outstanding fetches

Lots of threads
Fetch unit + ALU unit
Fast thread switch
In-order finish

ALU units reach 100%
utilization
Hardware sync for final
Output

GPU performance (reaches peak)

20 40 60 80

Total Instructions

0.0

0.2

0.4

0.6

T
im

e
(m

s)

1 fetch
2 fetch
3 fetch
4 fetch
5 fetch
6 fetch

From gpubench website

Implications

•

Compute is cheap but you need lots of parallelism to
keep all those alu’s

busy. (graphics shading is highly

parallel)

•

Bandwidth can be expensive (500 cycle memory
latency)

•

Compute goes up by 70% a year but bandwidth goes
up by 25% a year, latency goes down by 5% a year
(arithmetic intensity –

lots of alu

ops per read)

•

GPU wins when arithmetic intensity is high

•

GPU wins when streaming (little reuse –

lots of data)

saxpy

fft

–

sequential performance

What does a real machine look like?

AMD Radeon HD™ 2900 Highlights

18

Technology leadership
• Clock speeds –

742 MHz

• Transistor –

700 million

• Technology Process -

TSMC 80nm HS

• Power ~215 W, Pin Count -

2140

• Die Size 420mm

(20mm x 21mm)

2nd generation unified architecture
• Scalar ALU design with 320 stream

processing units
• 475 GigaFLOPS

of (MulAdd) compute

• 47.5 GigaPixels/Sec & 742 Mtri/sec

• 106 GB/sec Bandwidth

• Optimized for Dynamic Game
Computing and Accelerated Stream
Processing

DirectX® 10
• Massive shader and geometry

processing performance

• Shader Model 4.0 with Integer support

• Enabling the next generation of visual
effects

Cutting-edge image quality
features

• Advanced anti-aliasing and texture
filtering capabilities

• Fast High Dynamic Range rendering

• Programmable Tessellation Unit

ATI Avivo™ HD technology
• Delivering The Ultimate Visual

Experience™ For HD video

• HD display and audio connectivity

• HD DVD and Blu-Ray capable

Native CrossFire™ technology
• Superior multi-GPU support

• Scales up rendering performance
and image quality with 2 or more
GPUs

AMD Radeon HD2900 Graphics Unit
2nd Generation Unified Shader Architecture

Z/
S

te
nc

il
C

ac
he

Color Cache

Vertex
Assembler

Command Processor

Geometry
Assembler

Rasterizer

InterpolatorsH
ie

ra
rc

hi
ca

l Z

S
haderC

aches
Instruction &

C

onstant

Vertex Index Fetch
S

tre
am

 O
ut

L1 Texture C
ache

L2 Texture C
ache

Tessellator

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

Shader Export

Unified
Shader

Processors

Unified
Shader

Processors

Render Back-EndsRender Back-Ends

Texture U
nits

Texture U
nits

M
em

or
y

R
ea

d/
W

rit
e

C
ac

he

Setup
Unit

Setup
Unit

Z/
S

te
nc

il
C

ac
he

Color Cache

Vertex
Assembler

Command Processor

Geometry
Assembler

Rasterizer

InterpolatorsH
ie

ra
rc

hi
ca

l Z

S
haderC

aches
Instruction &

C

onstant

Vertex Index Fetch
S

tre
am

 O
ut

L1 Texture C
ache

L2 Texture C
ache

Tessellator

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

Shader Export

Unified
Shader

Processors

Unified
Shader

Processors

Render Back-EndsRender Back-Ends

Texture U
nits

Texture U
nits

M
em

or
y

R
ea

d/
W

rit
e

C
ac

he

Setup
Unit

Setup
Unit

Development from proven and
successful XBOX 360 graphics

• New dispatch processor handling
thousands of simultaneous threads

• Instruction Cache and Constant
Cache for unlimited program size

Up to 320 discrete, independent
stream processing units

Vliw ALU implementation

• Dedicated branch execution units

• Three dedicated fetch units

• Texture Cache

• Vertex Cache

• Load/Store Cache

Full support for DirectX 10.0,
Shader Model 4.0

20

Shader Processing Units (SPU)

Arranged as 5-way vliw stream processors
• Co-issue up to 5 scalar FP MAD (Multiply-Add)
• Up to 5 integer operations supported (cmp, logical, add)
• One of the 5 stream processing units additionally handles

* transcendental instructions (SIN, COS, LOG, EXP, RCP, RSQ)

* integer multiply and shift operations
• 32-bit floating point precision (round to nearest even)

Branch execution units handle flow control
and conditional operations
• Condition code generation for full branching
• Predication supported directly in ALU

General Purpose Registers
• 1 MByte

of GPR space for fast register access

General Purpose RegistersGeneral Purpose Registers

BranchBranch
ExecutionExecution

UnitUnit

Active Thread count

•

Assume a thread needs 5 registers

•

Each simd has 256 sets of 64 vector registers

•

256/5 = 51

•

51*64 threads per simd

•

4 simd engines so 51*64*4 active threads = 13056

•

Each register holds 4 –

32 bit values

CTM Introduction

•

The Close-To-the-Metal interface

•

CTM lets developers see a data parallel machine, not a
vertex/pixel processor

•

CTM removes all unnecessary driver overhead, but exposes
all the special features of the processor

•

CTM is a system developer interface, not an end user view

•

AMD is building a application interface on top of CTM

AMD Accelerated Computing Software

CTM Runtime
AMD STREAM Hardware

CAL
interface

C/C++
bindings
GCC etc

ACML/
COBRA

DX/OGL

New
Languages

Math/Video
Libraries

3'rd parties
Eco System

New Bindings
Language extensions

Compilers

A common interface

Inter operate for
games

Graphics Bindings

Shared Data

Performance
counters

Random number generation

•

Pseudorandom number generation on the GPU,
Sussman

et. al. Graphics Hardware 2006

•

Combined Explicit Inverse Congruent Generator

•

Some issues

–

Explicit so no state needs to be saved

–

Slow to compute

–

Not proven that parallel random generators are
uncorrelated.

10 times CPU speed (but slower then a CPU using a
more standard algorithm)

Hardware issues that determined the
algorithm

–

16 outputs per thread (removed)

–

No integer operations (removed)

–

Inexact division (partially removed –

no denorms)

•

Can implement Mersenne

twister algorithm

–

Requires integer ops + saved state

•

parallel version can be proved uncorrelated

–

16k parallel generators

•

Approx 100 times faster (CPU/GPU) on current
hardware

•

Current limitation –

pci

bus –

getting data into and

out of the GPU -

One year later

Observations

•

Random number generation moved from Odd-ball
technique to what might be overkill for simulation.

•

In one generation the GPU got both faster and
better!

•

Unlike CPU, GPU systems are rapidly changing.

•

You may need to recode algorithms each rev.

•

What remained constant: you need:

Massively parallel + lots of arithmetic intensity.

Disclaimer & Attribution

•DISCLAIMER
•The information presented in this document is for informational purposes only and may
contain technical inaccuracies, omissions and typographical errors.

•The information contained herein is subject to change and may be rendered inaccurate
for many reasons, including but not limited to product and roadmap changes, component
and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware
upgrades, or the like. AMD assumes no obligation to update or otherwise correct or
revise this information. However, AMD reserves the right to revise this information and
to make changes from time to time to the content hereof without obligation of AMD to
notify any person of such revisions or changes.

•AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES,
ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

•AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

•ATTRIBUTION
•© 2007 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo,
ATI, the ATI logo, Avivo, Catalyst, Radeon, The Ultimate Visual Experience and
combinations thereof are trademarks of Advanced Micro Devices, Inc. DirectX,
Microsoft, Windows and Vista are registered trademarks, of Microsoft Corporation in the
United States and/or other jurisdictions. Other names are for informational purposes
only and may be trademarks of their respective owners.

	HPEC 2007	 �
	Overview
	GPGPU
	GPU Programming Systems	
	Published results (kernels)
	Speedup switching to GPU (kernel code)
	Why are GPU’s getting faster
	GPU vs CPU – what is the difference?
	Slide Number 9
	CPU vs GPU	
	Chip design point
	CPU vs GPU performance
	CPU operation
	GPU THREADS �(lower clock – different scale)
	GPU performance (reaches peak)
	Implications
	What does a real machine look like?�
	AMD Radeon HD™ 2900 Highlights
	AMD Radeon HD2900 Graphics Unit�2nd Generation Unified Shader Architecture
	Shader Processing Units (SPU)
	Active Thread count
	CTM Introduction
	AMD Accelerated Computing Software
	Random number generation
	Hardware issues that determined the algorithm
	One year later 	
	Observations	
	Disclaimer & Attribution

