

Analysis and Mapping of Sparse Matrix Computations

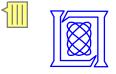
Nadya Bliss & Sanjeev Mohindra MIT Lincoln Laboratory

Varun Aggarwal & Una-May O'Reilly MIT Computer Science and AI Laboratory

September 19th, 2007

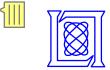
MIT Lincoln Laboratory

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, HPEC2007 - 1 NTBliss 12/13/2007

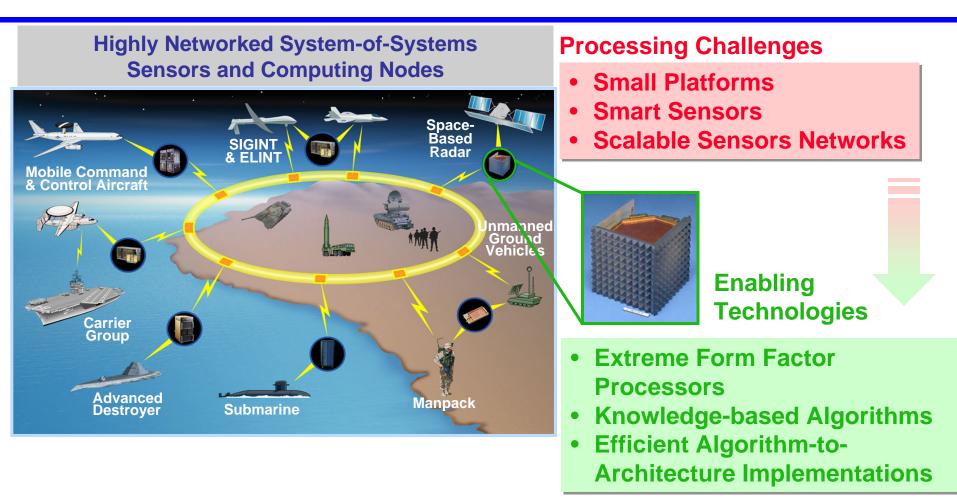


Outline

- Introduction
- Sparse Mapping Challenges
- Sparse Mapping Framework
- Results
- Summary



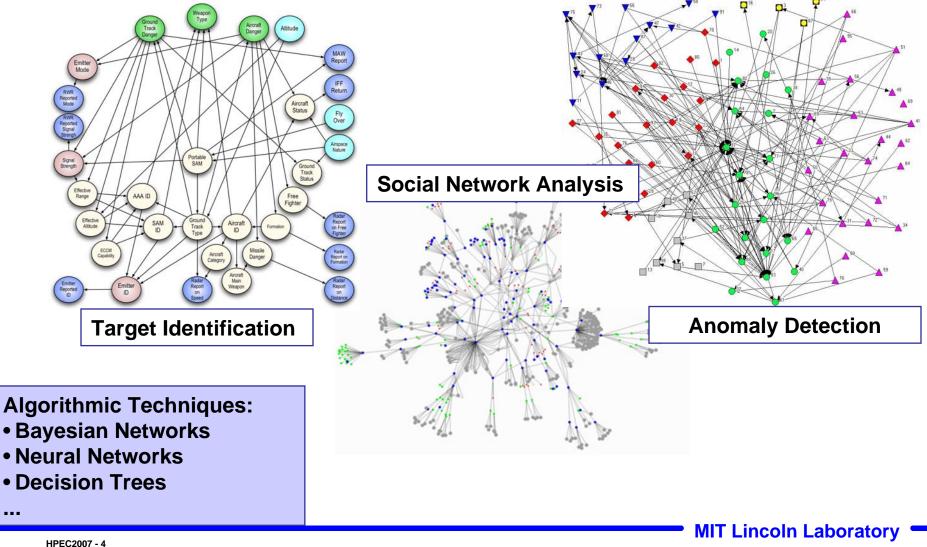
Emerging Sensor Processing Trends

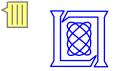


Rapid growth in size of data and complexity of analysis are driving the need for real-time knowledge processing at sensor front end.

Knowledge Processing & Graph Algorithms

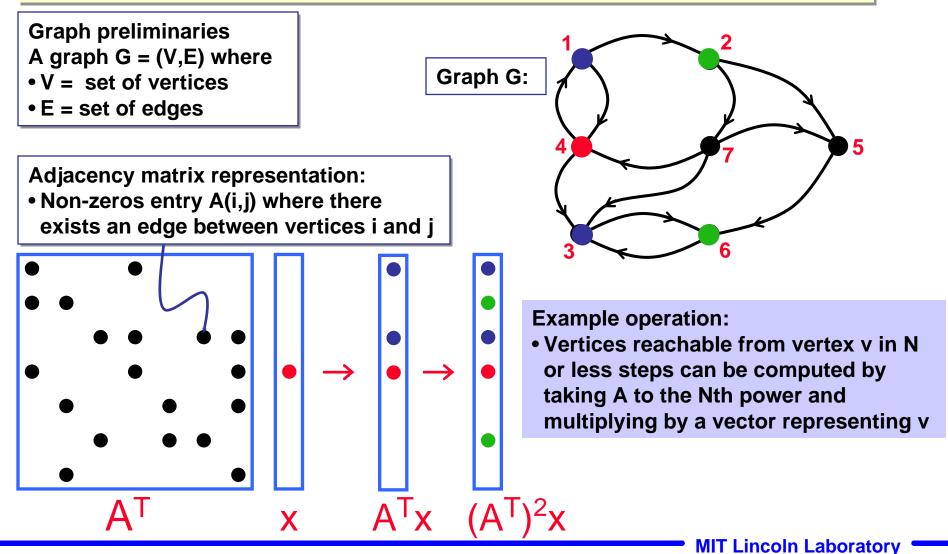
Many knowledge processing algorithms are based on graph algorithms



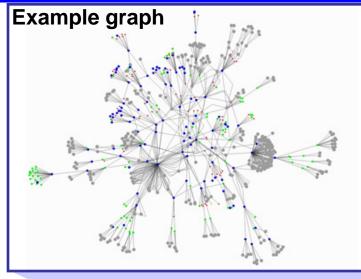


Graph-Sparse Duality

Many graph algorithms can be expressed as *sparse matrix* computations



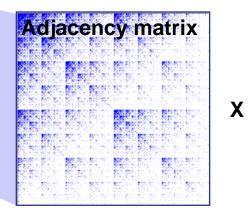
Motivating Example -Computing Vertex Importance-

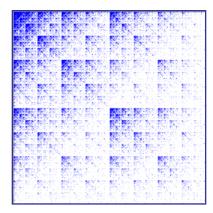


Common computation:

- Vertex/edge importance
- Graph/sparse duality: matrix multiply Applications in:
- Social Networks
- Biological Networks
- Computer Networks and VLSI Layout
- Transportation Planning
- Financial and Economic Networks

- Matrix multiply is computed for each vertex
- Must be recomputed if graph is dynamic (changing connections between nodes)
- Current typical efficiency: 0.001 of peak performance

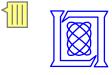




Sparse computations are <0.1% efficient.

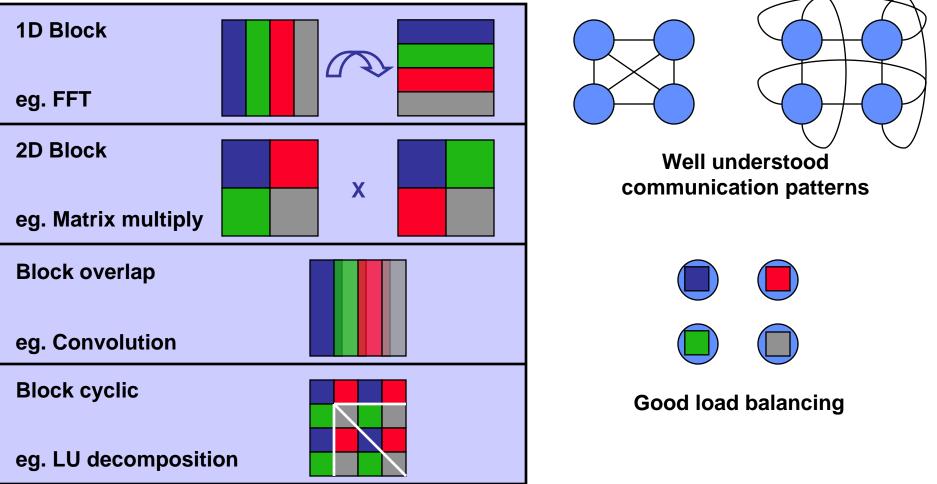
Outline

- Introduction
- Sparse Mapping Challenges
- Sparse Mapping Framework
- Results
- Summary



Mapping of Dense Computations

Common dense array distributions:

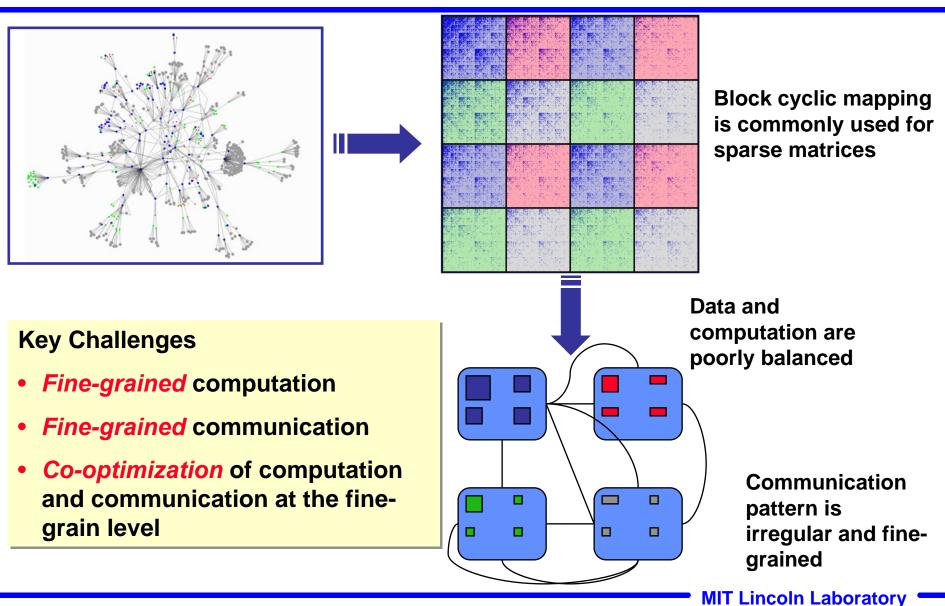


Regular distributions allow for efficient mapping of dense computations

MIT Lincoln Laboratory

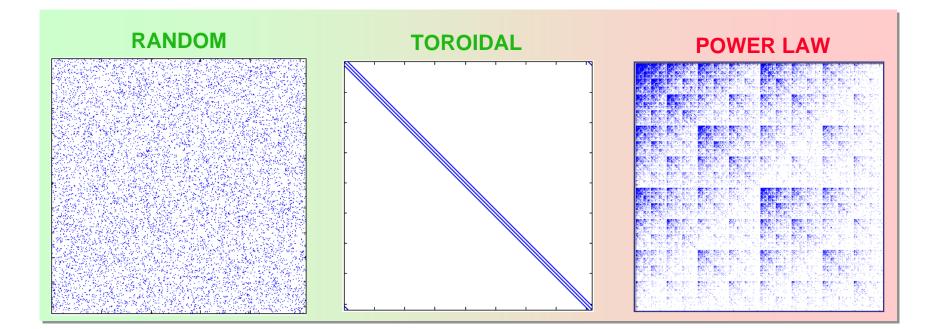
HPEC2007 - 8 NTBliss 12/13/2007

Mapping of Sparse Computations



Common Types of Sparse Matrices

Sparsity structure of the matrix has significant impact on mapping

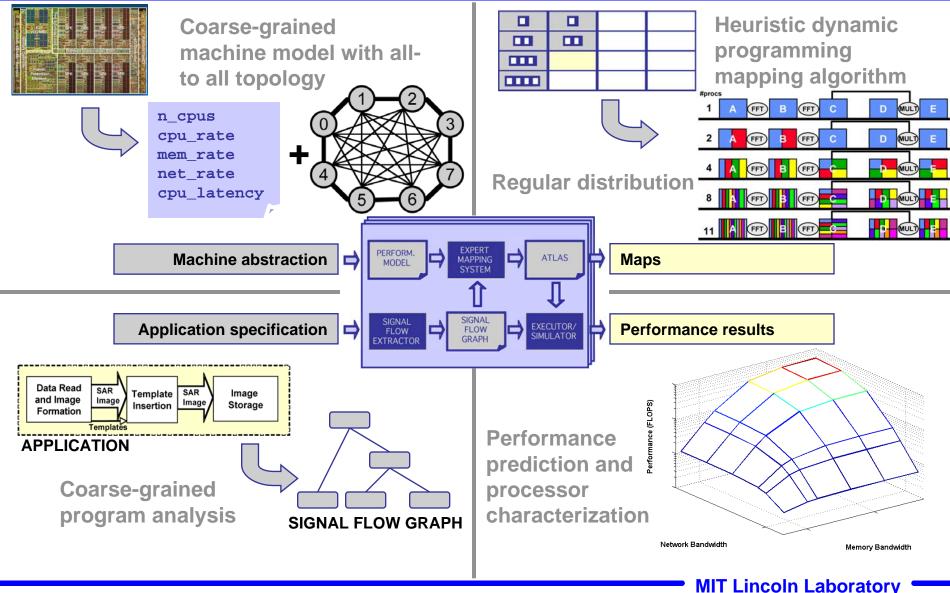


Increasing load balancing complexity

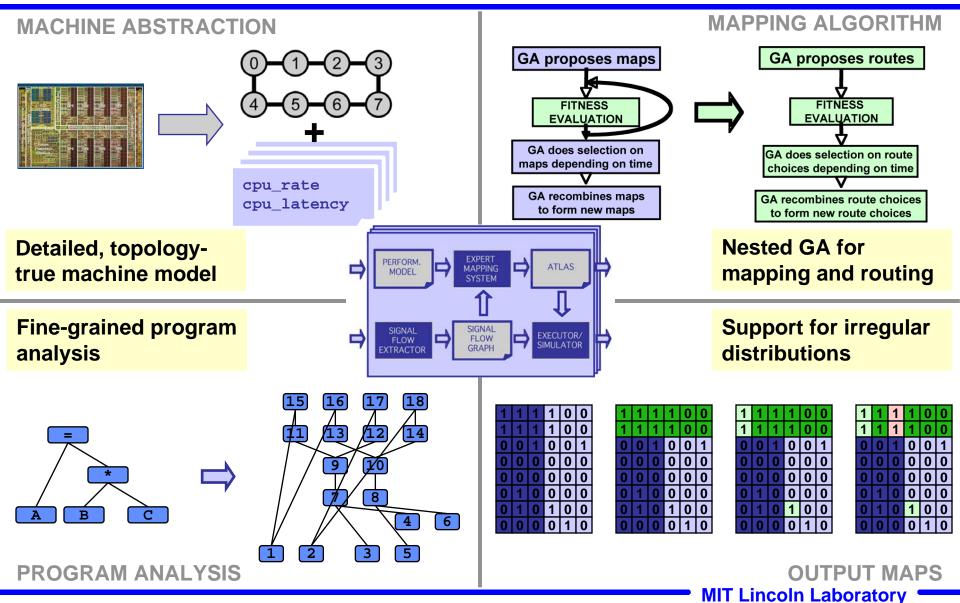
Outline

- Introduction
- Sparse Mapping Challenges
- Sparse Mapping Framework
- Results
- Summary

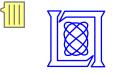
Dense Mapping Framework



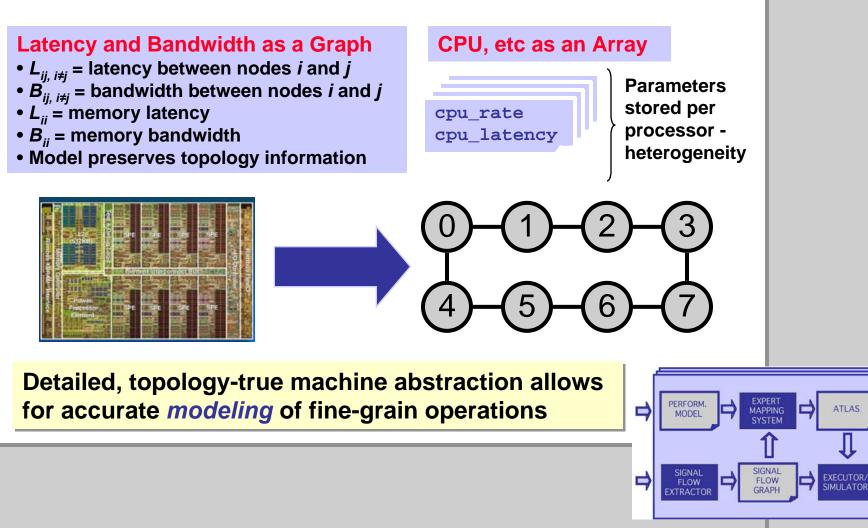
HPEC2007 - 12 NTBliss 12/13/2007 Bliss, et al. Automatic Mapping of HPEC Challenge Benchmarks, HPEC 2006. Travinin, et al. pMapper: Automatic Mapping of Parallel MATLAB Program, HPEC 2005.

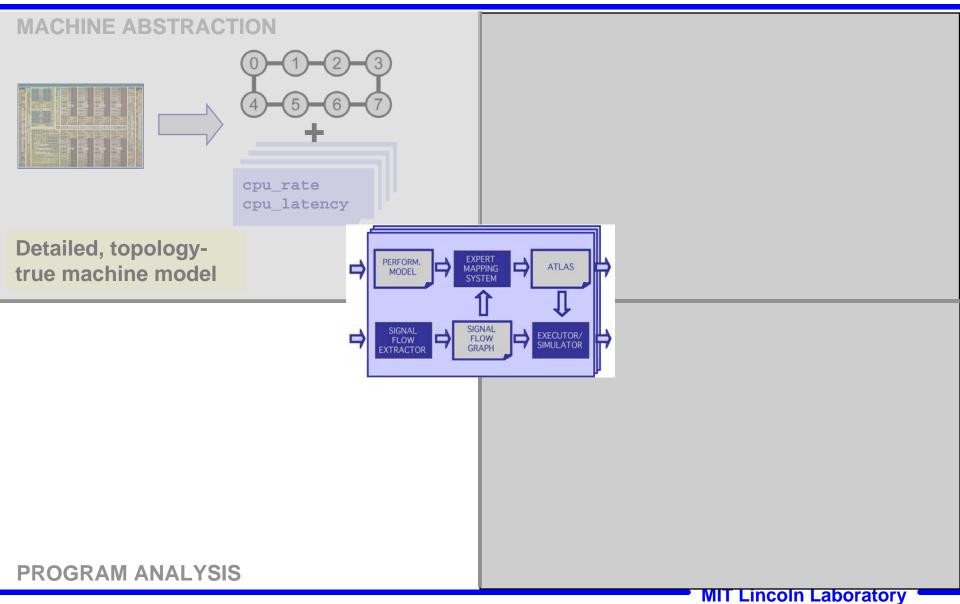


HPEC2007 - 13 NTBliss 12/13/2007

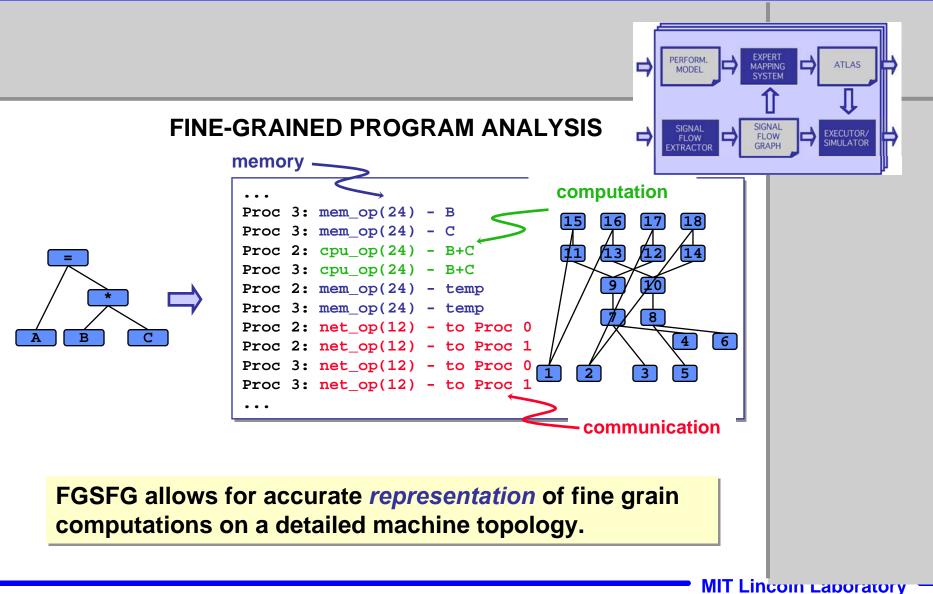


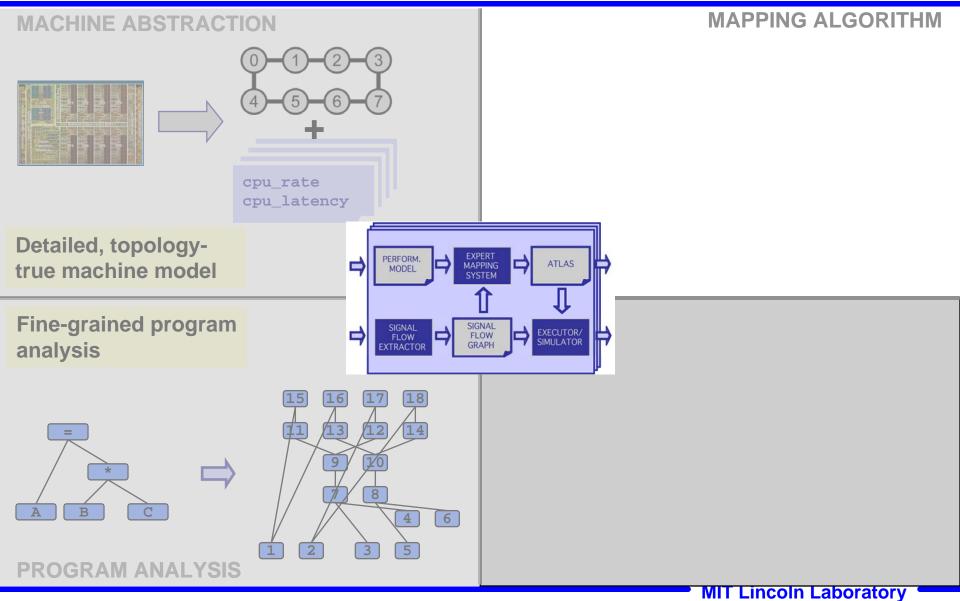
MACHINE ABSTRACTION





HPEC2007 - 15 NTBliss 12/13/2007

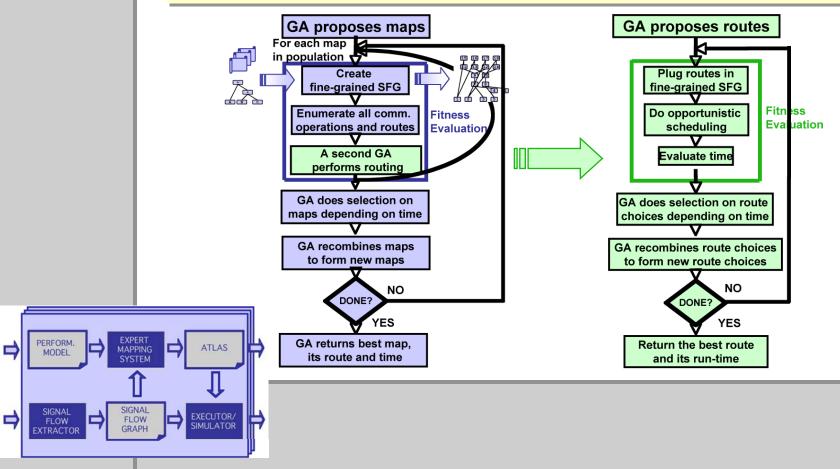


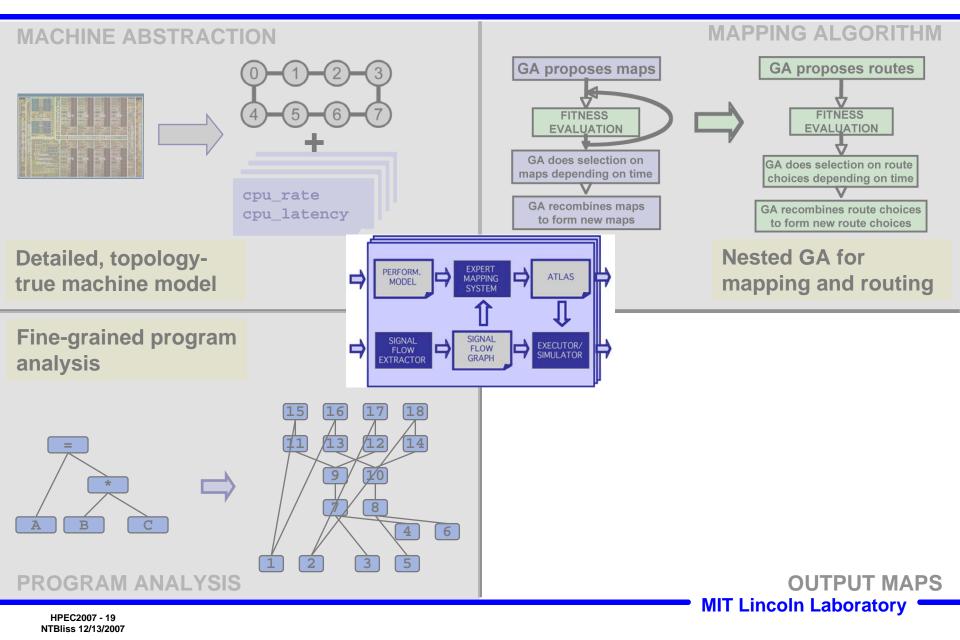


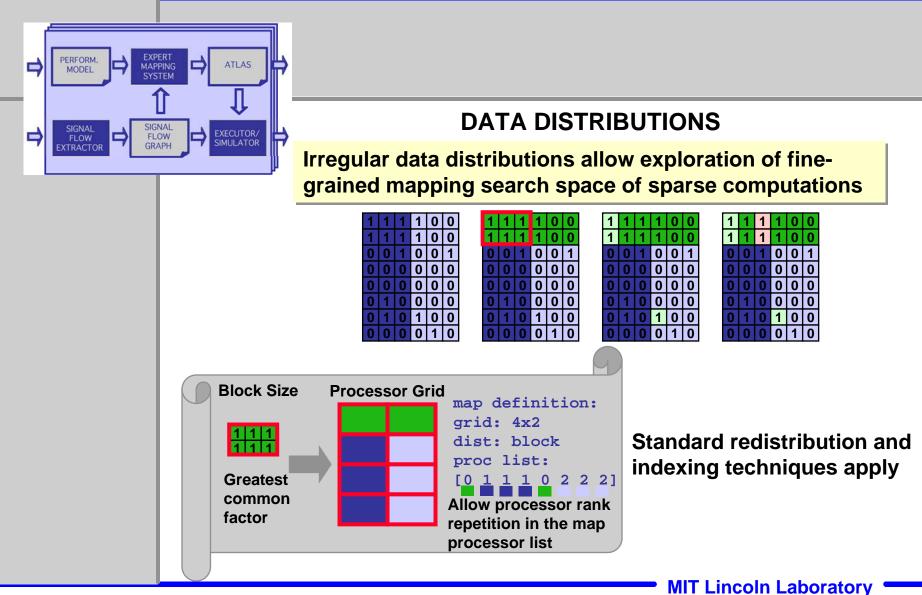
HPEC2007 - 17 NTBliss 12/13/2007

MAPPING AND ROUTING ALGORITHM

Combinatorial nature of the problem makes it well suited for an approximation approach: nested genetic algorithm (GA)





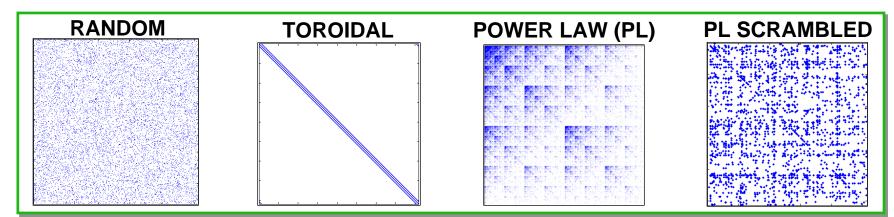


Outline

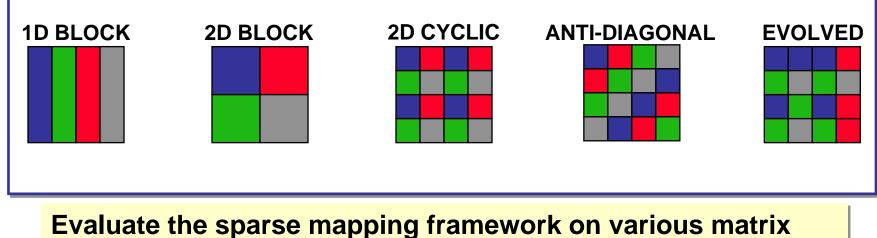
- Introduction
- Sparse Mapping Challenges
- Sparse Mapping Framework
- Results
- Summary

Experiments

MATRIX TYPES:

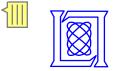


DISTRIBUTIONS:



types and compare with performance of regular distributions

MIT Lincoln Laboratory



Results: Performance

Matrix Type	1D Block	2D Block	2D Block Cyclic (FLOPS)	Anti-Diag Cyclic	Evolved
Random Sparse	0.8	0.8	1 (3.3*10 ⁷)	2.6	11
Power Law	1.3	.6	1 (1.0*10 ⁸)	2.7	18
Power Law Scrambled	1.4	1.4	1 (2.0*10 ⁷)	3	17
Toroidal	2.5	1.4	1 (3.3*10 ⁶)	8.5	94

Experiment details:

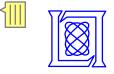
- Results relative to 2D block cyclic distribution
- Machine model: 8 processor ring with 256 GB/sec bandwidth
- Matrix size: 256x256
- Number of non-zeros: 8*256

Sparse mapping framework outperforms all other distributions on all matrix types

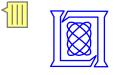
Results: Maps and Scaling

Map evolved for a 256x256 matrix applied to 32x32 to 4096x4096 **TOROIDAL** А в **Torus Scaling** 10 - Evolved 🔶 – Anti-Dia gonal Performance: FLOPS Performance: 3.12e+08 FLOPS × 10* 3.5 Performance 107 Performance advantage Good solution preserved convergence 10 1.5 103 104 105 10 10' 10 90 100 20 40 Matrix Size Generation **POWER LAW** в Simpler mapping for matrix B characteristic of parallel matrix multiply algorithm

Sparse mapping framework exploits both matrix structure and algorithm properties



- Digital array sensors are driving the need for knowledge processing at the sensor front-end
- Knowledge processing applications are often based on graph algorithms which in turn can be represented with sparse matrix algebra operations
- Sparse mapping framework allows for accurate modeling, representation, and mapping of fine-grained applications
- Initial results provide greater than an order of magnitude advantage over traditional 2D block cyclic distributions



- MIT Lincoln Laboratory Grid (LLGrid) Team
- Robert Bond
- Pamela Evans
- Jeremy Kepner
- Zach Lemnios
- Dan Rabideau
- Ken Senne