
HPEC2007 - 1
NTBliss 12/13/2007

MIT Lincoln Laboratory

Analysis and Mapping of
Sparse Matrix Computations

Nadya Bliss & Sanjeev

Mohindra
MIT Lincoln Laboratory

Varun Aggarwal

& Una-May O’Reilly
MIT Computer Science and AI Laboratory

September 19th, 2007

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations,
conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Presenter
Presentation Notes
Title slide. This talk presents a framework for analyzing and mapping sparse matrices. This is a joint work with MIT CSAIL.

MIT Lincoln Laboratory
HPEC2007 - 2

NTBliss 12/13/2007

Outline

• Introduction
• Sparse Mapping Challenges
• Sparse Mapping Framework
• Results
• Summary

Presenter
Presentation Notes
Outline slide. Let us start by presenting the big picture motivation for our work.

MIT Lincoln Laboratory
HPEC2007 - 3

NTBliss 12/13/2007

Emerging Sensor Processing Trends

SIGINT
& ELINT

Space-
Based
Radar

Unmanned
Ground
Vehicles

ManpackSubmarine
Advanced
Destroyer

Carrier
Group

Mobile Command
& Control Aircraft

Highly Networked System-of-Systems
Sensors and Computing Nodes

• Small Platforms
• Smart Sensors
• Scalable Sensors Networks

• Small Platforms
• Smart Sensors
• Scalable Sensors Networks

• Extreme Form Factor
Processors

• Knowledge-based Algorithms
• Efficient Algorithm-to-

Architecture Implementations

• Extreme Form Factor
Processors

• Knowledge-based Algorithms
• Efficient Algorithm-to-

Architecture Implementations

Processing Challenges

Enabling
Technologies

Rapid growth in size of data and complexity of analysis are driving the
need for real-time knowledge processing at sensor front end.
Rapid growth in size of data and complexity of analysis are driving the
need for real-time knowledge processing at sensor front end.

Presenter
Presentation Notes
As sensor become increasingly advanced and collect more and more data, the need to perform some knowledge (or post-detection) processing at the front end becomes apparent. Currently, the algorithms that perform knowledge processing are very inefficient (we will seem more as to why later) and that is driving our current research.

MIT Lincoln Laboratory
HPEC2007 - 4

NTBliss 12/13/2007

Knowledge Processing & Graph Algorithms

Many knowledge processing algorithms are based on graph algorithmsMany knowledge processing algorithms are based on graph algorithms

Target Identification

Social Network Analysis

Anomaly Detection

Algorithmic Techniques:
• Bayesian Networks
• Neural Networks
• Decision Trees
...

Presenter
Presentation Notes
Many knowledge processing algorithms are based on graphs and consequently algorithm operating on graphs. Some example include Bayesian network, neural networks, and decision tree.

MIT Lincoln Laboratory
HPEC2007 - 5

NTBliss 12/13/2007

Graph-Sparse Duality
Many graph algorithms can be expressed as sparse matrix

computationsMany graph algorithms can be expressed as sparse matrix

computations

AT x (AT)2xATx

Graph preliminaries
A graph G = (V,E) where
• V = set of vertices
• E = set of edges

Graph preliminaries
A graph G = (V,E) where
• V = set of vertices
• E = set of edges

Adjacency matrix representation:
• Non-zeros entry A(i,j) where there

exists an edge between vertices i and j

Adjacency matrix representation:
• Non-zeros entry A(i,j) where there

exists an edge between vertices i and j

1 2

3

4 7

6

5

Graph G:

Example operation:
• Vertices reachable from vertex v in N

or less steps can be computed by
taking A to the Nth power and
multiplying by a vector representing v

Presenter
Presentation Notes
Graphs can be expressed as sparse matrices, where a non-zero entry represents an edge between vertices. Consequently, many operations on graphs can be cast as sparse linear algebra operations, such as matrix-matrix multiplies and matrix-vector multiplies.

MIT Lincoln Laboratory
HPEC2007 - 6

NTBliss 12/13/2007

Motivating Example
-Computing Vertex Importance-

Common computation:
• Vertex/edge importance
• Graph/sparse duality: matrix multiply
Applications in:
• Social Networks
• Biological Networks
• Computer Networks and VLSI Layout
• Transportation Planning
• Financial and Economic Networks

X

Sparse computations are <0.1% efficient.Sparse computations are <0.1% efficient.

• Matrix multiply is computed for each vertex
• Must be recomputed if graph is dynamic
(changing connections between nodes)

• Current typical efficiency: 0.001 of peak
performance

Example graph

Adjacency matrix

Presenter
Presentation Notes
Let us consider an example. A common operation on a graph to computation of importance of each vertex. This is also know as vertex betweenness centrality. This is done commonly to determine key people in social networks or possible points of failure in, for example, computer networks. The graph can be represented as an adjacency matrix and the key operation to compute importance of a vertex is a sparse matrix-matrix multiply. Currently, this computation is very inefficient. The situation gets even worse if the graph under analysis is dynamic.

MIT Lincoln Laboratory
HPEC2007 - 7

NTBliss 12/13/2007

Outline

• Introduction
• Sparse Mapping Challenges
• Sparse Mapping Framework
• Results
• Summary

Presenter
Presentation Notes
Outline slide.
Now let us go into more detail on why mapping sparse computations is a challenge.

MIT Lincoln Laboratory
HPEC2007 - 8

NTBliss 12/13/2007

Mapping of Dense Computations

Regular distributions allow for efficient mapping of dense computationsRegular distributions allow for efficient mapping of dense computations

Common dense array distributions:

1D Block

2D Block

Block overlap

Block cyclic

eg. FFT

eg. Matrix multiply

eg. Convolution

eg. LU decomposition

X
Well understood

communication patterns

Good load balancing

Presenter
Presentation Notes
First, let us consider the mapping of dense computations. This subject has been addressed at this workshop. Regular distributions, such as block, cyclic, and block cyclic allow for efficient mappings of dense operations onto architectures. This is largely due to well understood communication patterns (such as all-to-all) and good load balancing of data.

MIT Lincoln Laboratory
HPEC2007 - 9

NTBliss 12/13/2007

Mapping of Sparse Computations

Block cyclic mapping
is commonly used for
sparse matrices

Data and
computation are
poorly balanced

Communication
pattern is
irregular and fine-
grained

Key Challenges

• Fine-grained

computation

• Fine-grained

communication

• Co-optimization

of computation
and communication at the fine-
grain level

Key Challenges

• Fine-grained

computation

• Fine-grained

communication

• Co-optimization

of computation
and communication at the fine-
grain level

Presenter
Presentation Notes
On the contrary, regular mappings do not work nearly as well for sparse arrays and computations. Consider our example graph and a 2D block cyclic mapping. It is clear that the mapping does now load balance the data. Furthermore, the communication patterns for computation kernels, such as matrix multiplication, are irregular. Sparse mapping, thus, require fine-grained program analysis and co-optimization of computation and communication.

MIT Lincoln Laboratory
HPEC2007 - 10

NTBliss 12/13/2007

Common Types of Sparse Matrices

Sparsity structure of the matrix has significant impact on mappingSparsity structure of the matrix has significant impact on mapping

RANDOM TOROIDAL POWER LAW

Increasing load balancing complexity

Presenter
Presentation Notes
Before we discuss how we address these challenges, here are a few common types of sparse matrices. The load balancing becomes increasingly difficult from left to right.

MIT Lincoln Laboratory
HPEC2007 - 11

NTBliss 12/13/2007

Outline

• Introduction
• Sparse Mapping Challenges
• Sparse Mapping Framework
• Results
• Summary

Presenter
Presentation Notes
Outline
The next section discusses the details of our approach.

MIT Lincoln Laboratory
HPEC2007 - 12

NTBliss 12/13/2007

Dense Mapping Framework

Machine abstraction

Application specification

APPLICATION

SIGNAL FLOW GRAPH

Maps

Performance results

n_cpus
cpu_rate
mem_rate
net_rate
cpu_latency

Heuristic dynamic
programming
mapping algorithm

Regular distribution

Coarse-grained
program analysis

Coarse-grained
machine model with all-
to all topology

+

Bliss, et al. Automatic Mapping of HPEC Challenge Benchmarks, HPEC 2006.
Travinin, et al. pMapper: Automatic Mapping of Parallel MATLAB Program, HPEC 2005.

Performance
prediction and
processor
characterization

Presenter
Presentation Notes
First, let us review the dense mapping framework developed at the laboratory, pMapper, which was presented previously at this workshop. pMapper takes as an input a machine model (abstraction) and an application specification. The application specification is then converted into a parse tree or a signal flow graph. Then, the mapping algorithm, determines an efficient set of maps for the program and either executes or simulates the results using either the actual machine or the machine model. The results can then be used to determine processor characteristics well suited for the application space.

Over the next few slides, we will the framework as it has been updated to distribute sparse computations.

MIT Lincoln Laboratory
HPEC2007 - 13

NTBliss 12/13/2007

Sparse Mapping Framework
MACHINE ABSTRACTION

PROGRAM ANALYSIS

MAPPING ALGORITHM

OUTPUT MAPS

Detailed, topology-
true machine model

cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency

+

Fine-grained program
analysis

Nested GA for
mapping and routing

Support for irregular
distributions

15 16 17 18

11 13 12 14

9 10

7 8

4 6

1 2 3 5

=

*

A B C

1 1 1
1 1 1
0 0 1
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0

1 0 0
1 0 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

1 1 1
1 1 1
0 0 1
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0

1 0 0
1 0 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

1 1 1
1 1 1
0 0 1
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0

1 0 0
1 0 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

1 1 1
1 1 1
0 0 1
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0

1 0 0
1 0 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

Presenter
Presentation Notes
Finally, the framework allows irregular mapping support to further allow fine-grain program optimization.

MIT Lincoln Laboratory
HPEC2007 - 14

NTBliss 12/13/2007

Sparse Mapping Framework

0

4

1

5

2

6

3

7

MACHINE ABSTRACTION

Latency and Bandwidth as a Graph
• Lij, i≠j

= latency between nodes i

and j
• Bij, i≠j

= bandwidth between nodes i

and j
• Lii

= memory latency
• Bii

= memory bandwidth
• Model preserves topology information

cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency

Detailed, topology-true machine abstraction allows
for accurate modeling

of fine-grain operations
Detailed, topology-true machine abstraction allows
for accurate modeling

of fine-grain operations

CPU, etc as an Array

Parameters
stored per
processor -
heterogeneity

Presenter
Presentation Notes
The machine model for sparse computations must be significantly more detailed. To address this goal, the machine model is implemented to store communication information in a graph and the rest of the parameters in array form.

MIT Lincoln Laboratory
HPEC2007 - 15

NTBliss 12/13/2007

Sparse Mapping Framework
MACHINE ABSTRACTIONMACHINE ABSTRACTION

Detailed, topology-
true machine model

cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency

+

PROGRAM ANALYSIS

Presenter
Presentation Notes
Second, we will discuss fine grain program analysis

MIT Lincoln Laboratory
HPEC2007 - 16

NTBliss 12/13/2007

Sparse Mapping Framework

...
Proc 3: mem_op(24) - B
Proc 3: mem_op(24) - C
Proc 2: cpu_op(24) - B+C
Proc 3: cpu_op(24) - B+C
Proc 2: mem_op(24) - temp
Proc 3: mem_op(24) - temp
Proc 2: net_op(12) - to Proc 0
Proc 2: net_op(12) - to Proc 1
Proc 3: net_op(12) - to Proc 0
Proc 3: net_op(12) - to Proc 1
...

...
Proc 3: mem_op(24) - B
Proc 3: mem_op(24) - C
Proc 2: cpu_op(24) - B+C
Proc 3: cpu_op(24) - B+C
Proc 2: mem_op(24) - temp
Proc 3: mem_op(24) - temp
Proc 2: net_op(12) - to Proc 0
Proc 2: net_op(12) - to Proc 1
Proc 3: net_op(12) - to Proc 0
Proc 3: net_op(12) - to Proc 1
...

15 16 17 18

11 13 12 14

9 10

7 8

4 6

1 2 3 5

=

*

A B C

FINE-GRAINED PROGRAM ANALYSIS

FGSFG allows for accurate representation

of fine grain
computations on a detailed machine topology.
FGSFG allows for accurate representation

of fine grain
computations on a detailed machine topology.

memory
computation

communication

Presenter
Presentation Notes
Program analysis is now supported at the operation level, as opposed to the kernel level.

MIT Lincoln Laboratory
HPEC2007 - 17

NTBliss 12/13/2007

Sparse Mapping Framework
MACHINE ABSTRACTIONMACHINE ABSTRACTION

Detailed, topology-
true machine model

cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency

+

PROGRAM ANALYSISPROGRAM ANALYSIS

Fine-grained program
analysis

15 16 17 18

11 13 12 14

9 10

7 8

4 6

1 2 3 5

=

*

A B C

MAPPING ALGORITHM

Presenter
Presentation Notes
Third, we will discuss the mapping algorithm.

MIT Lincoln Laboratory
HPEC2007 - 18

NTBliss 12/13/2007

Sparse Mapping Framework
MAPPING AND ROUTING ALGORITHM

Combinatorial nature of the problem makes it well suited for
an approximation approach: nested genetic algorithm (GA)

Combinatorial nature of the problem makes it well suited for
an approximation approach: nested genetic algorithm (GA)

Presenter
Presentation Notes
The mapping perform by a nested genetic algorithm that performs both mapping and routing.

MIT Lincoln Laboratory
HPEC2007 - 19

NTBliss 12/13/2007

Sparse Mapping Framework
MACHINE ABSTRACTION

PROGRAM ANALYSIS

MAPPING ALGORITHM

OUTPUT MAPS

Detailed, topology-
true machine model

cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency

+

Fine-grained program
analysis

Nested GA for
mapping and routing

15 16 17 18

11 13 12 14

9 10

7 8

4 6

1 2 3 5

=

*

A B C

Presenter
Presentation Notes
Finally, the framework allows irregular mapping support to further allow fine-grain program optimization.

MIT Lincoln Laboratory
HPEC2007 - 20

NTBliss 12/13/2007

Sparse Mapping Framework

Irregular data distributions allow exploration of fine-
grained mapping search space of sparse computations
Irregular data distributions allow exploration of fine-
grained mapping search space of sparse computations

Standard redistribution and
indexing techniques apply

1 1 1
1 1 1
0 0 1
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0

1 0 0
1 0 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

1 1 1
1 1 1
0 0 1
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0

1 0 0
1 0 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

1 1 1
1 1 1
0 0 1
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0

1 0 0
1 0 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

1 1 1
1 1 1
0 0 1
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0

1 0 0
1 0 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

Processor GridBlock Size

1 1 1
1 1 1

Greatest
common
factor

map definition:
grid: 4x2
dist: block
proc list:
[0 1 1 1 0 2 2 2]

Allow processor rank
repetition in the map
processor list

DATA DISTRIBUTIONS

MIT Lincoln Laboratory
HPEC2007 - 21

NTBliss 12/13/2007

Outline

• Introduction
• Sparse Mapping Challenges
• Sparse Mapping Framework
• Results
• Summary

MIT Lincoln Laboratory
HPEC2007 - 22

NTBliss 12/13/2007

Experiments
MATRIX TYPES:

DISTRIBUTIONS:

RANDOM TOROIDAL POWER LAW (PL)

1D BLOCK 2D BLOCK 2D CYCLIC EVOLVED

Evaluate the sparse mapping framework on various matrix
types and compare with performance of regular distributions
Evaluate the sparse mapping framework on various matrix
types and compare with performance of regular distributions

PL SCRAMBLED

ANTI-DIAGONAL

Presenter
Presentation Notes
We performed a number of experiments to compare how well the framework performs both on various matrices and again standard regular distributions.

MIT Lincoln Laboratory
HPEC2007 - 23

NTBliss 12/13/2007

Results: Performance

Sparse mapping framework
outperforms all other
distributions on all matrix types

Sparse mapping framework
outperforms all other
distributions on all matrix types

Matrix Type 1D Block 2D Block
2D Block

Cyclic
(FLOPS)

Anti-Diag
Cyclic Evolved

Random
Sparse 0.8 0.8 1

(3.3*107) 2.6 11

Power Law 1.3 .6 1
(1.0*108) 2.7 18

Power Law
Scrambled 1.4 1.4 1

(2.0*107) 3 17

Toroidal 2.5 1.4 1
(3.3*106) 8.5 94

Experiment details:
• Results relative to 2D block cyclic distribution
• Machine model: 8 processor ring with 256

GB/sec bandwidth
• Matrix size: 256x256
• Number of non-zeros: 8*256

Experiment details:
• Results relative to 2D block cyclic distribution
• Machine model: 8 processor ring with 256

GB/sec bandwidth
• Matrix size: 256x256
• Number of non-zeros: 8*256

Presenter
Presentation Notes
Our framework consistently outperforms standard distributions by more than an order of magnitude.

MIT Lincoln Laboratory
HPEC2007 - 24

NTBliss 12/13/2007

Results: Maps and Scaling

POWER LAW

Map evolved for a 256x256 matrix applied to 32x32 to 4096x4096

Sparse mapping framework exploits both matrix structure and algorithm propertiesSparse mapping framework exploits both matrix structure and algorithm properties

Performance
advantage
preserved

TOROIDAL

Good solution
convergence

Simpler mapping for matrix B characteristic
of parallel matrix multiply algorithm

Presenter
Presentation Notes
The results generated by the mapping framework scale well with matrix size and better than the block cyclic mapping.

MIT Lincoln Laboratory
HPEC2007 - 25

NTBliss 12/13/2007

Summary

• Digital array sensors are driving the need for knowledge
processing at the sensor front-end

• Knowledge processing applications are often based on
graph algorithms which in turn can be represented with
sparse matrix algebra operations

• Sparse mapping framework allows for accurate modeling,
representation, and mapping of fine-grained applications

• Initial results provide greater than an order of magnitude
advantage over traditional 2D block cyclic distributions

Presenter
Presentation Notes
Summary slide

MIT Lincoln Laboratory
HPEC2007 - 26

NTBliss 12/13/2007

Acknowledgements

• MIT Lincoln Laboratory Grid (LLGrid) Team
• Robert Bond
• Pamela Evans
• Jeremy Kepner
• Zach Lemnios
• Dan Rabideau
• Ken Senne

Presenter
Presentation Notes
Acknowledgement slide

	Analysis and Mapping of �Sparse Matrix Computations
	Outline
	Emerging Sensor Processing Trends
	Knowledge Processing & Graph Algorithms
	Graph-Sparse Duality
	Motivating Example�-Computing Vertex Importance-
	Outline
	Mapping of Dense Computations
	Mapping of Sparse Computations
	Common Types of Sparse Matrices
	Outline
	Dense Mapping Framework
	Sparse Mapping Framework
	Sparse Mapping Framework
	Sparse Mapping Framework
	Sparse Mapping Framework
	Sparse Mapping Framework
	Sparse Mapping Framework
	Sparse Mapping Framework
	Sparse Mapping Framework
	Outline
	Experiments
	Results: Performance
	Results: Maps and Scaling
	Summary
	Acknowledgements

