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Presentation Notes
Title slide. This talk presents a framework for analyzing and mapping sparse matrices. This is a joint work with MIT CSAIL.
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Presenter
Presentation Notes
Outline slide. Let us start by presenting the big picture motivation for our work.
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Emerging Sensor Processing Trends
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Group
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& Control Aircraft

Highly Networked System-of-Systems 
Sensors and Computing Nodes

• Small Platforms
• Smart Sensors
• Scalable Sensors Networks

• Small Platforms
• Smart Sensors
• Scalable Sensors Networks

• Extreme Form Factor 
Processors 

• Knowledge-based Algorithms
• Efficient Algorithm-to- 

Architecture Implementations 

• Extreme Form Factor 
Processors

• Knowledge-based Algorithms
• Efficient Algorithm-to- 

Architecture Implementations

Processing Challenges

Enabling 
Technologies

Rapid growth in size of data and complexity of analysis are driving the 
need for real-time knowledge processing at sensor front end. 
Rapid growth in size of data and complexity of analysis are driving the 
need for real-time knowledge processing at sensor front end.

Presenter
Presentation Notes
As sensor become increasingly advanced and collect more and more data, the need to perform some knowledge (or post-detection) processing at the front end becomes apparent. Currently, the algorithms that perform knowledge processing are very inefficient (we will seem more as to why later) and that is driving our current research.
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Knowledge Processing & Graph Algorithms

Many knowledge processing algorithms are based on graph algorithmsMany knowledge processing algorithms are based on graph algorithms

Target Identification

Social Network Analysis

Anomaly Detection

Algorithmic Techniques:
• Bayesian Networks
• Neural Networks
• Decision Trees
...

Presenter
Presentation Notes
Many knowledge processing algorithms are based on graphs and consequently algorithm operating on graphs. Some example include Bayesian network, neural networks, and decision tree.
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Graph-Sparse Duality
Many graph algorithms can be expressed as sparse matrix

 

computationsMany graph algorithms can be expressed as sparse matrix

 

computations

AT x (AT)2xATx

Graph preliminaries
A graph G = (V,E) where 
• V =  set of vertices
• E = set of edges

Graph preliminaries
A graph G = (V,E) where 
• V =  set of vertices
• E = set of edges

Adjacency matrix representation:
• Non-zeros entry A(i,j) where there 

exists an edge between vertices i and j 

Adjacency matrix representation:
• Non-zeros entry A(i,j) where there 

exists an edge between vertices i and j

1 2

3

4 7

6

5

Graph G: 

Example operation:
• Vertices reachable from vertex v in N 

or less steps can be computed by 
taking A to the Nth power and 
multiplying by a vector representing v

Presenter
Presentation Notes
Graphs can be expressed as sparse matrices, where a non-zero entry represents an edge between vertices. Consequently, many operations on graphs can be cast as sparse linear algebra operations, such as matrix-matrix multiplies and matrix-vector multiplies.
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Motivating Example 
-Computing Vertex Importance-

Common computation:
• Vertex/edge importance 
• Graph/sparse duality: matrix multiply
Applications in:
• Social Networks
• Biological Networks
• Computer Networks and VLSI Layout
• Transportation Planning
• Financial and Economic Networks

X

Sparse computations are <0.1% efficient.Sparse computations are <0.1% efficient.

• Matrix multiply is computed for each vertex
• Must be recomputed if graph is dynamic 
(changing connections between nodes)

• Current typical efficiency: 0.001 of peak 
performance

Example graph

Adjacency matrix

Presenter
Presentation Notes
Let us consider an example. A common operation on a graph to computation of importance of each vertex. This is also know as vertex betweenness centrality. This is done commonly to determine key people in social networks or possible points of failure in, for example, computer networks. The graph can be represented as an adjacency matrix and the key operation to compute importance of a vertex is a sparse matrix-matrix multiply. Currently, this computation is very inefficient. The situation gets even worse if the graph under analysis is dynamic.
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Presenter
Presentation Notes
Outline slide.
Now let us go into more detail on why mapping sparse computations is a challenge.
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Mapping of Dense Computations

Regular distributions allow for efficient mapping of dense computationsRegular distributions allow for efficient mapping of dense computations

Common dense array distributions:

1D Block

2D Block

Block overlap

Block cyclic

eg. FFT

eg. Matrix multiply

eg. Convolution

eg. LU decomposition

X
Well understood 

communication patterns

Good load balancing

Presenter
Presentation Notes
First, let us consider the mapping of dense computations. This subject has been addressed at this workshop. Regular distributions, such as block, cyclic, and block cyclic allow for efficient mappings of dense operations onto architectures. This is largely due to well understood communication patterns (such as all-to-all) and good load balancing of data.
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Mapping of Sparse Computations

Block cyclic mapping 
is commonly used for 
sparse matrices

Data and 
computation are 
poorly balanced

Communication 
pattern is 
irregular and fine- 
grained

Key Challenges

• Fine-grained

 

computation

• Fine-grained

 

communication

• Co-optimization

 

of computation 
and communication at the fine- 
grain level 

Key Challenges

• Fine-grained

 

computation

• Fine-grained

 

communication

• Co-optimization

 

of computation 
and communication at the fine- 
grain level

Presenter
Presentation Notes
On the contrary, regular mappings do not work nearly as well for sparse arrays and computations. Consider our example graph and a 2D block cyclic mapping. It is clear that the mapping does now load balance the data. Furthermore, the communication patterns for computation kernels, such as matrix multiplication, are irregular. Sparse mapping, thus, require fine-grained program analysis and co-optimization of computation and communication.
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Common Types of Sparse Matrices

Sparsity structure of the matrix has significant impact on mappingSparsity structure of the matrix has significant impact on mapping

RANDOM TOROIDAL POWER LAW

Increasing load balancing complexity

Presenter
Presentation Notes
Before we discuss how we address these challenges, here are a few common types of sparse matrices. The load balancing becomes increasingly difficult from left to right.
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Outline

• Introduction
• Sparse Mapping Challenges
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• Results
• Summary

Presenter
Presentation Notes
Outline
The next section discusses the details of our approach.
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Dense Mapping Framework

Machine abstraction

Application specification

APPLICATION

SIGNAL FLOW GRAPH

Maps

Performance results

n_cpus
cpu_rate
mem_rate
net_rate
cpu_latency

Heuristic dynamic 
programming 
mapping algorithm

Regular distribution

Coarse-grained 
program analysis

Coarse-grained 
machine model with all- 
to all topology

+

Bliss, et al. Automatic Mapping of HPEC Challenge Benchmarks, HPEC 2006.
Travinin, et al. pMapper: Automatic Mapping of Parallel MATLAB Program, HPEC 2005. 

Performance 
prediction and 
processor 
characterization

Presenter
Presentation Notes
First, let us review the dense mapping framework developed at the laboratory, pMapper, which was presented previously at this workshop. pMapper takes as an input a machine model (abstraction) and an application specification. The application specification is then converted into a parse tree or a signal flow graph. Then, the mapping algorithm, determines an efficient set of maps for the program and either executes or simulates the results using either the actual machine or the machine model. The results can then be used to determine processor characteristics well suited for the application space.

Over the next few slides, we will the framework as it has been updated to distribute sparse computations.
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Sparse Mapping Framework
MACHINE ABSTRACTION

PROGRAM ANALYSIS

MAPPING ALGORITHM

OUTPUT MAPS

Detailed, topology- 
true machine model

cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency

+

Fine-grained program 
analysis

Nested GA for 
mapping and routing

Support for irregular 
distributions
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Presenter
Presentation Notes
Finally, the framework allows irregular mapping support to further allow fine-grain program optimization.
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Sparse Mapping Framework

0

4

1

5

2

6

3

7

MACHINE ABSTRACTION

Latency and Bandwidth as a Graph
• Lij, i≠j

 

= latency between nodes i

 

and j
• Bij, i≠j

 

= bandwidth between nodes i

 

and j
• Lii

 

= memory latency
• Bii

 

= memory bandwidth
• Model preserves topology information

cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency

Detailed, topology-true machine abstraction allows 
for accurate modeling

 

of fine-grain operations 
Detailed, topology-true machine abstraction allows 
for accurate modeling

 

of fine-grain operations

CPU, etc as an Array

Parameters 
stored per 
processor - 
heterogeneity

Presenter
Presentation Notes
The machine model for sparse computations must be significantly more detailed. To address this goal, the machine model is implemented to store communication information in a graph and the rest of the parameters in array form. 
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Sparse Mapping Framework
MACHINE ABSTRACTIONMACHINE ABSTRACTION

Detailed, topology- 
true machine model

cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency

+

PROGRAM ANALYSIS

Presenter
Presentation Notes
Second, we will discuss fine grain program analysis
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Sparse Mapping Framework

...
Proc 3: mem_op(24) - B
Proc 3: mem_op(24) - C
Proc 2: cpu_op(24) - B+C
Proc 3: cpu_op(24) - B+C
Proc 2: mem_op(24) - temp
Proc 3: mem_op(24) - temp
Proc 2: net_op(12) - to Proc 0
Proc 2: net_op(12) - to Proc 1
Proc 3: net_op(12) - to Proc 0
Proc 3: net_op(12) - to Proc 1
...

...
Proc 3: mem_op(24) - B
Proc 3: mem_op(24) - C
Proc 2: cpu_op(24) - B+C
Proc 3: cpu_op(24) - B+C
Proc 2: mem_op(24) - temp
Proc 3: mem_op(24) - temp
Proc 2: net_op(12) - to Proc 0
Proc 2: net_op(12) - to Proc 1
Proc 3: net_op(12) - to Proc 0
Proc 3: net_op(12) - to Proc 1
...

15 16 17 18

11 13 12 14

9 10

7 8

4 6

1 2 3 5

=

*

A B C

FINE-GRAINED PROGRAM ANALYSIS

FGSFG allows for accurate representation

 

of fine grain 
computations on a detailed machine topology. 
FGSFG allows for accurate representation

 

of fine grain 
computations on a detailed machine topology.

memory
computation

communication

Presenter
Presentation Notes
Program analysis is now supported at the operation level, as opposed to the kernel level. 
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Sparse Mapping Framework
MACHINE ABSTRACTIONMACHINE ABSTRACTION

Detailed, topology- 
true machine model

cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency

+

PROGRAM ANALYSISPROGRAM ANALYSIS

Fine-grained program 
analysis
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MAPPING ALGORITHM

Presenter
Presentation Notes
Third, we will discuss the mapping algorithm.
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Sparse Mapping Framework
MAPPING AND ROUTING ALGORITHM

Combinatorial nature of the problem makes it well suited for 
an approximation approach: nested genetic algorithm (GA) 

Combinatorial nature of the problem makes it well suited for 
an approximation approach: nested genetic algorithm (GA)

Presenter
Presentation Notes
The mapping perform by a nested genetic algorithm that performs both mapping and routing. 
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Sparse Mapping Framework
MACHINE ABSTRACTION

PROGRAM ANALYSIS

MAPPING ALGORITHM

OUTPUT MAPS

Detailed, topology- 
true machine model

cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency
cpu_rate
cpu_latency

+

Fine-grained program 
analysis

Nested GA for 
mapping and routing
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Presenter
Presentation Notes
Finally, the framework allows irregular mapping support to further allow fine-grain program optimization.
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Sparse Mapping Framework

Irregular data distributions allow exploration of fine- 
grained mapping search space of sparse computations 
Irregular data distributions allow exploration of fine- 
grained mapping search space of sparse computations

Standard redistribution and 
indexing techniques apply
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Processor GridBlock Size

1 1 1
1 1 1

Greatest 
common 
factor

map definition:
grid: 4x2
dist: block
proc list: 
[0 1 1 1 0 2 2 2]

Allow processor rank 
repetition in the map 
processor list

DATA DISTRIBUTIONS
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Experiments
MATRIX TYPES:

DISTRIBUTIONS:

RANDOM TOROIDAL POWER LAW (PL)

1D BLOCK 2D BLOCK 2D CYCLIC EVOLVED

Evaluate the sparse mapping framework on various matrix 
types and compare with performance of regular distributions 
Evaluate the sparse mapping framework on various matrix 
types and compare with performance of regular distributions

PL SCRAMBLED

ANTI-DIAGONAL

Presenter
Presentation Notes
We performed a number of experiments to compare how well the framework performs both on various matrices and again standard regular distributions.
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Results: Performance

Sparse mapping framework 
outperforms all other 
distributions on all matrix types 

Sparse mapping framework 
outperforms all other 
distributions on all matrix types

Matrix Type 1D Block 2D Block
2D Block 

Cyclic
(FLOPS)

Anti-Diag 
Cyclic Evolved

Random 
Sparse 0.8 0.8 1

(3.3*107) 2.6 11

Power Law 1.3 .6 1
(1.0*108) 2.7 18

Power Law 
Scrambled 1.4 1.4 1

(2.0*107) 3 17

Toroidal 2.5 1.4 1
(3.3*106) 8.5 94

Experiment details:
• Results relative to 2D block cyclic distribution
• Machine model: 8 processor ring with 256 

GB/sec bandwidth 
• Matrix size: 256x256
• Number of non-zeros: 8*256

Experiment details:
• Results relative to 2D block cyclic distribution
• Machine model: 8 processor ring with 256 

GB/sec bandwidth
• Matrix size: 256x256
• Number of non-zeros: 8*256

Presenter
Presentation Notes
Our framework consistently outperforms standard distributions by more than an order of magnitude.
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Results: Maps and Scaling

POWER LAW

Map evolved for a 256x256 matrix applied to 32x32 to 4096x4096

Sparse mapping framework exploits both matrix structure and algorithm propertiesSparse mapping framework exploits both matrix structure and algorithm properties

Performance 
advantage 
preserved 

TOROIDAL

Good solution 
convergence

Simpler mapping for matrix B characteristic 
of parallel matrix multiply algorithm

Presenter
Presentation Notes
The results generated by the mapping framework scale well with matrix size and better than the block cyclic mapping.
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Summary

• Digital array sensors are driving the need for knowledge 
processing at the sensor front-end

• Knowledge processing applications are often based on 
graph algorithms which in turn can be represented with 
sparse matrix algebra operations

• Sparse mapping framework allows for accurate modeling, 
representation, and mapping of fine-grained applications

• Initial results provide greater than an order of magnitude 
advantage over traditional 2D block cyclic distributions

Presenter
Presentation Notes
Summary slide
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Presentation Notes
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