
*This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Analysis and Mapping of Sparse Matrix Computations
Nadya Travinin Bliss, Sanjeev Mohindra

Varun Aggarwal, Una-May O’Reilly
{nt, smohindra}@ll.mit.edu

MIT Lincoln Laboratory, Lexington, MA 02420
varun_ag@mit.edu, unamay@csail.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139

Abstract
In the past, knowledge processing (anomaly detection,
target identification, social network analysis) of sensor data
did not require real-time processing speeds. However, the
rapid growth in the size of the data and the complexity of
data analysis are driving the need for applications that
provide real-time signal and knowledge processing at the
front end. Many knowledge processing algorithms, such as
Bayesian networks, social networks, and neural networks,
are based on graph algorithms. Graph algorithms are
difficult to parallelize and thus cannot take advantage of
multi-core architectures. Many graph operations can be cast
as sparse linear algebra operations. While this increases the
ease of programming, parallel sparse algorithms are still
inefficient. This talk presents an automatic mapping and
routing framework for sparse operations. This work
extends the pMapper automatic mapping framework to
handle the finer granularity of the sparse matrix problem.
New machine modeling and program analysis techniques
are discussed, followed by details of the mapping algorithm
and preliminary results.

Introduction and Motivation
MIT Lincoln Laboratory has been developing techniques
for automatic mapping of signal processing applications.
The pMapper [1, 2] automatic mapping approach has been
demonstrated to be both feasible and effective. However,
modeling, program analysis, and mapping techniques have
been limited to dense matrix computations. As more and
more post-processing algorithms move to the front end,
efficient parallel implementations of those algorithms are
becoming necessary.

Post-processing algorithms are typically represented in
graphical form, but can also be formulated using sparse
matrix notation. The efficiency of the graph algorithms is
often only a small fraction (< 0.01) of the peak throughput
of a conventional architecture, and the efficiency
deteriorates as the problem size increases. Since graph
algorithms are not well suited for parallelization, the
implementation efficiency is likely to reduce even further
as multi-core processors become prevalent. Sparse matrix
formulations expose intrinsic algorithm parallelism;
however, efficient mappings are still needed to exploit the
parallelism and deliver respectable efficiency, motivating
the research reported here.

Let us consider an example where we need to perform
anomaly detection on a network of about 10,000 entities.
Given a disturbance in the environment, we need to make

decisions in a second or less. The data can be represented
by a 10K × 10K sparse matrix. A typical processing step
could involve performing 20K operations per entity,
requiring 2×108 operations per second. These operations
have irregular data access patters, distinctly different from
standard signal processing computations, making the
mapping problem increasingly challenging. The low
efficiency of these operations presents a computation
challenge in front-end sensor form-factors. Additionally,
the problem size is expected to grow significantly in the
near future to allow for persistent surveillance.

All of these factors motivate the need for increasing
parallel efficiency of sparse matrix computations. This
efficiency is tightly coupled to the underlying network
architecture requiring fine-grained analysis of
communication patterns.

Machine Model
To provide detailed analysis of the communication
operations, a detailed model of the underlying architecture
is necessary. This model has to provide accurate
representation of machine topology and allow for
heterogeneous networks. To address this need, we have
chosen to represent the machine model as a graph structure,
with adjacency matrices representing latency and
bandwidth between any two nodes. Specifically, L and B
are matrices for latency and bandwidth respectively, where
Lij represents latency between nodes i and j; and Bij
represents bandwidth between nodes i and j. Additional
processor information is stored in a linear array with each
entry corresponding to each processing element.

Program Analysis
In order to efficiently map sparse arrays, access to
individual communication operations is desirable. Figure 1
illustrates an example where the computation is addition of
two matrices, followed by a redistribution operation. 1a is
the coarse-grained signal flow graph, or parse tree, of the
operation. 1b is a sample mapping. Here, different colors
indicate different processors. Specifically, B and C are
mapped onto processors 2 (green) and 3 (light green) and A
is mapped onto processors 0 (blue) and 1 (light blue). 1c is
the list of operations that need to occur. For example,
consider operation 11 which is a communication operation
between processor 2 and 0. The time for this operation
depends on the underlying network topology and the route
chosen. Finally, 1d is the fine grained signal flow graph of
the addition, with each node corresponding to an operation
in 1c.

All nodes in the fine-grained signal flow graph can be
classified as memory operations (memop), computation
operations (cpuop), or communication operations (netop).
For each operation, the program analysis framework
provides information regarding what processor(s) is (are)
involved and the amount of data that is being operated on.
Sparse support has been implemented by storing both index
ranges and number of non-zeros in each node.

Figure 1: Extracting individual operations (c) and fine-
grained signal flow graph (d) from coarse-grained signal flow
graph (a) and maps (b).

Mapping and Results
A nested genetic algorithm (GA) has been implemented to
handle mapping of sparse arrays onto detailed machine
model specifications. Two nested GAs (Figure 2)
complementarily search for a map (outer GA) and then
search for the best route among the routing options for the
map (inner GA). The nesting of the two algorithms yields
a <map, route> candidate solution. The performance of this
candidate can be estimated on the fine-grained
topologically defined machine model that has routing
dependencies. For example, communication operations,
such as operation 11 in Figure 1c cannot be determined
without first determining the maps for the arrays. The
combinatorial nature of both the mapping and routing
problems makes the approach well addressed by the GAs.

Due to the nature of the sparse matrix computation, the
mapper is allowed to consider irregular mappings, or
mappings that are not purely block-cyclic in nature. To
evaluate the quality of our solutions, the results are
compared with the standard mapping used for sparse
computations, which is 2D cyclic. The results in Table 1
are for a matrix multiply operation [3]. The computation
was mapped onto an 8-processor ring and an 8-processor
cube. A matrix multiply operation was chosen because it is
a key kernel in post-processing algorithms. In the talk,
results will be presented for larger arrays, however the
preliminary results already indicate that access to sparsity
information and support for irregular mappings provide an

order of magnitude performance improvement over 2D
cyclic distribution. We expect results to further improve as
we fine tune the GA. Figure 3 illustrates a sample mapping
produced by the mapping framework. Different colors
indicate different processors used.

Figure 2: Genetic Algorithm Mapper.

Table 1: Operations per second using different mappings.

 2D Cyclic Map GA Mapper
8 proc ring 5.65× 106 5.65× 107
8 proc cube 7.80× 106 1.41× 108

Figure 3: Sample mappings produced by the mapper.

Summary
For this talk, pMapper automatic mapping framework is
extended to provide support for mapping sparse arrays and
computations on those arrays. Automatic mapping of
sparse arrays is a significantly different problem from
mapping of dense arrays. Finer grained analysis is
necessary and access to the sparsity pattern is valuable. The
talk will present results for larger problems. Additionally,
many sparse computations have similar patterns. Once a
solution is evolved, it is possible to keep re-using it within
the same family of matrices. The results for various sparse
matrix families will also be presented.

References
[1] N. Travinin, H. Hoffmann, R. Bond, H. Chan, J. Kepner, E.
Wong, “pMapper: Automatic Mapping of Parallel Matlab
Programs,” HPEC 2005 Workshop, Lexington, MA, September
2005.
[2] N. T. Bliss, J. Dahlstrom, D. Jennings, S. Mohindra,
“Automatic Mapping of the HPEC Challenge Benchmarks,”
HPEC Workshop 2006, Lexington, MA, September 2006.
[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd
Edition. John Hopkins University Press, Baltimore, Maryland,
1996.

	Machine Model
	Summary

	References

