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Abstract 
In the past, knowledge processing (anomaly detection, 
target identification, social network analysis) of sensor data 
did not require real-time processing speeds. However, the 
rapid growth in the size of the data and the complexity of 
data analysis are driving the need for applications that 
provide real-time signal and knowledge processing at the 
front end. Many knowledge processing algorithms, such as 
Bayesian networks, social networks, and neural networks, 
are based on graph algorithms. Graph algorithms are 
difficult to parallelize and thus cannot take advantage of 
multi-core architectures. Many graph operations can be cast 
as sparse linear algebra operations. While this increases the 
ease of programming, parallel sparse algorithms are still 
inefficient. This talk presents an automatic mapping and 
routing framework for sparse operations.  This work 
extends the pMapper automatic mapping framework to 
handle the finer granularity of the sparse matrix problem. 
New machine modeling and program analysis techniques 
are discussed, followed by details of the mapping algorithm 
and preliminary results. 
  
Introduction and Motivation 
MIT Lincoln Laboratory has been developing techniques 
for automatic mapping of signal processing applications. 
The pMapper [1, 2] automatic mapping approach has been 
demonstrated to be both feasible and effective. However, 
modeling, program analysis, and mapping techniques have 
been limited to dense matrix computations. As more and 
more post-processing algorithms move to the front end, 
efficient parallel implementations of those algorithms are 
becoming necessary.  
 
Post-processing algorithms are typically represented in 
graphical form, but can also be formulated using sparse 
matrix notation.  The efficiency of the graph algorithms is 
often only a small fraction (< 0.01) of the peak throughput 
of a conventional architecture, and the efficiency 
deteriorates as the problem size increases. Since graph 
algorithms are not well suited for parallelization, the 
implementation efficiency is likely to reduce even further 
as multi-core processors become prevalent.  Sparse matrix 
formulations expose intrinsic algorithm parallelism; 
however, efficient mappings are still needed to exploit the 
parallelism and deliver respectable efficiency, motivating 
the research reported here. 
 
Let us consider an example where we need to perform 
anomaly detection on a network of about 10,000 entities. 
Given a disturbance in the environment, we need to make 

decisions in a second or less. The data can be represented 
by a 10K × 10K sparse matrix. A typical processing step 
could involve performing 20K operations per entity, 
requiring 2×108 operations per second. These operations 
have irregular data access patters, distinctly different from 
standard signal processing computations, making the 
mapping problem increasingly challenging. The low 
efficiency of these operations presents a computation 
challenge in front-end sensor form-factors. Additionally, 
the problem size is expected to grow significantly in the 
near future to allow for persistent surveillance. 
  
All of these factors motivate the need for increasing 
parallel efficiency of sparse matrix computations. This 
efficiency is tightly coupled to the underlying network 
architecture requiring fine-grained analysis of 
communication patterns. 
 
Machine Model 
To provide detailed analysis of the communication 
operations, a detailed model of the underlying architecture 
is necessary. This model has to provide accurate 
representation of machine topology and allow for 
heterogeneous networks. To address this need, we have 
chosen to represent the machine model as a graph structure, 
with adjacency matrices representing latency and 
bandwidth between any two nodes. Specifically, L and B 
are matrices for latency and bandwidth respectively, where 
Lij represents latency between nodes i and j; and Bij 
represents bandwidth between nodes i and j. Additional 
processor information is stored in a linear array with each 
entry corresponding to each processing element. 
 
Program Analysis 
In order to efficiently map sparse arrays, access to 
individual communication operations is desirable. Figure 1 
illustrates an example where the computation is addition of 
two matrices, followed by a redistribution operation. 1a is 
the coarse-grained signal flow graph, or parse tree, of the 
operation. 1b is a sample mapping. Here, different colors 
indicate different processors. Specifically, B and C are 
mapped onto processors 2 (green) and 3 (light green) and A 
is mapped onto processors 0 (blue) and 1 (light blue). 1c is 
the list of operations that need to occur. For example, 
consider operation 11 which is a communication operation 
between processor 2 and 0. The time for this operation 
depends on the underlying network topology and the route 
chosen. Finally, 1d is the fine grained signal flow graph of 
the addition, with each node corresponding to an operation 
in 1c. 



All nodes in the fine-grained signal flow graph can be 
classified as memory operations (memop), computation 
operations (cpuop), or communication operations (netop). 
For each operation, the program analysis framework 
provides information regarding what processor(s) is (are) 
involved and the amount of data that is being operated on. 
Sparse support has been implemented by storing both index 
ranges and number of non-zeros in each node. 

 
Figure 1: Extracting individual operations (c) and fine-
grained signal flow graph (d) from coarse-grained signal flow 
graph (a) and maps (b).  
 
Mapping and Results 
A nested genetic algorithm (GA) has been implemented to 
handle mapping of sparse arrays onto detailed machine 
model specifications. Two nested GAs (Figure 2) 
complementarily search for a map (outer GA) and then 
search for the best route among the routing options for the 
map (inner GA).  The nesting of the two algorithms yields 
a <map, route> candidate solution. The performance of this 
candidate can be estimated on the fine-grained 
topologically defined machine model that has routing 
dependencies. For example, communication operations, 
such as operation 11 in Figure 1c cannot be determined 
without first determining the maps for the arrays. The 
combinatorial nature of both the mapping and routing 
problems makes the approach well addressed by the GAs.  
 
Due to the nature of the sparse matrix computation, the 
mapper is allowed to consider irregular mappings, or 
mappings that are not purely block-cyclic in nature. To 
evaluate the quality of our solutions, the results are 
compared with the standard mapping used for sparse 
computations, which is 2D cyclic. The results in Table 1 
are for a matrix multiply operation [3]. The computation 
was mapped onto an 8-processor ring and an 8-processor 
cube. A matrix multiply operation was chosen because it is 
a key kernel in post-processing algorithms. In the talk, 
results will be presented for larger arrays, however the 
preliminary results already indicate that access to sparsity 
information and support for irregular mappings provide an 

order of magnitude performance improvement over 2D 
cyclic distribution. We expect results to further improve as 
we fine tune the GA. Figure 3 illustrates a sample mapping 
produced by the mapping framework. Different colors 
indicate different processors used. 
 

 
Figure 2: Genetic Algorithm Mapper. 

 
Table 1: Operations per second using different mappings. 

 2D Cyclic Map GA Mapper 
8 proc ring 5.65× 106 5.65× 107 
8 proc cube 7.80× 106 1.41× 108    

 
Figure 3: Sample mappings produced by the mapper. 

 
Summary 
For this talk, pMapper automatic mapping framework is 
extended to provide support for mapping sparse arrays and 
computations on those arrays. Automatic mapping of 
sparse arrays is a significantly different problem from 
mapping of dense arrays. Finer grained analysis is 
necessary and access to the sparsity pattern is valuable. The 
talk will present results for larger problems. Additionally, 
many sparse computations have similar patterns. Once a 
solution is evolved, it is possible to keep re-using it within 
the same family of matrices. The results for various sparse 
matrix families will also be presented. 
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