Toward Fast Computation of Dense Image Correspondence on the GPU

Mark Duchaineau, Jonathan D. Cohen, Sheila Vaidya Lawrence Livermore National Laboratory

High Performance Embedded Computing Workshop 18-20 September, 2007

Auspices Statement

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Are UAV gigapixel video cameras feasible in the next few years? Yes, but...

Recipe for Gigapixel Video?:

- 320 KAC-3100 CMOS sensors
 - 2048x1536 2.7um pixels
 - 12Hz full-frame readout, 128mm
 - Noise and packaging issues
- 4 professional camera lenses
 - Not high enough resolution
 - => custom optics, non-planar focus
- Major innovations in packaging, assembly and calibration needed => MIT LL design and automation
- Massive supercomputer onboard
 => selective refinement pipeline

- Pros
 - 32000x32000 pixels
 - Catches transitory events
 - Many off-the-shelf parts
- Cons
 - 1.0 terabyte per minute
 - Massive stream compute must be near the sensor

Challenge for future wide-area airborne video is handling "1000 HDTV feeds"

LLNL is designing selective refinement overhead processing for extreme scalability

- Real-time analysis
- End-to-end optimality feedback

Key ideas for wide area aerial video: dense correspondence and selective refinement

- Image correspondence determines where points in a scene move in the pixel arrays over time
 - Enables stabilization of video for human and machine analysis
 - Critical for temporal compression (10-100x more compression than spatial schemes)
 - Dense correspondence allows 3D analysis: eliminates parallax, super-resolution, etc...
- Selective refinement works in pieces, just where it is needed
 - Allows optimal exploitation of sparseness (e.g. movers) and temporal coherence
 - Best utilization of limited onboard compute resources given dynamic scenes, priorities

gives 10-100x speedups

Dense correspondence algorithms stabilize aerial imagery more than image registration

- Dense correspondence provides millions of degrees of freedom, compared to 3-48 degrees of freedom for global image registration
- This gives better mover/background analysis, compression and additional advanced features, e.g. resolution enhancement, 3D
- Real-time dense correspondence is fast on new multi-core chips

Dense correspondence eliminates "false" change detections due to parallax

- Affine warp versus dense correspondence
 - Left: source and target images
 - Middle: Affine warp of source with difference image
 - Major difference from parallax
 - Right: Dense correspondence warp with difference image
 - Main differences are movers

inputs

dense correspondence

Dense correspondence is the main computational effort in 3D extraction

- 3D points can be extracted using a conventional depthfrom-stereo algorithm pipeline:
 - Perform dense correspondence
 - Extract camera pose
 - Triangulate to obtain 3D samples

Collaboration with Michael J. Goldman, Mauricio Hess-Flores and Prof. Kenneth I. Joy of U.C. Davis

Dense correspondence, selective refinement define second generation systems

- Generation 1:
 - GPS/INS and flat earth model
 → simple projection, but not stable for 3D scenes
 - Global image registration, compose mappings for stabilization
 - Background subtraction for mover detection

- Compression: background once per minute, movers as sprites (LLNL) or raw background subtraction (MITLL)
- Operations on whole images, many resamplings

- Generation 2:
 - 3D parallax tracking directly from images → expensive solver, stable everywhere
 - Register to sample image per minute --or-- to 3D model extracted in real-time
 - Fewer false positives in mover detection
 - Super-resolution and signal-tonoise enhancement
 - Parameterized time for background and movers likely will allow 1000x compression
 - Operates on sparse subsets, one resampling at end of pipe

Processing includes pre-flight calibration, onboard streaming, ground-station analysis

 <u>Calibration processing</u> 1) Bias/gain maps per pixel Fine-scale pixel variations Broad-scale vignetting effects 2) Focal-plane stitching geometry 3) Ray direction map per pixel 4) Noise modeling 5) Temperature adjustment model 6) Optimize wavelets and layout 	Per-frame onboard streamprocessing• Image conditioning• Derived values• Hierarchy building• Dense correspondence• Mover/background segmentation• Multi-frame layout and fitting• Wavelet transform in time, space• Quantization, encoding, packing
 (Semi-)automated ground-based processing General feature extraction Track generation/network analysis Road and facility modeling Multi-mission integration Database generation 	 Interactive ground-based analysis Rapid pan/zoom in space and time Manual track generation Facility monitoring Analyst integration of additional data layers Database query

Real-time Optimally Adapting Meshes/ROAM is our selective-refinement backbone

Uses 4-8 meshes with diamond data structure

Dual-queue incremental updates exploit frameto-frame coherence

Flexible framework – many optimizations, extensions

- frustum cull
- defer priority compute
- triangle patches
- texture tiles
- line-of-sight
- 3D diamonds
- fast dense correspondence

Claims to fame [As of Aug 29, 2007]:

- "Real-time Optimally Adapting Meshes" has 11,900 Google hits
- '97 paper has 427 citations [via Google Scholar]
 Used in several game titles (e.g. Treadmarks)
 Los Alamos "Outstanding Innovation" award
 Vis '04 "Best Paper" (Hwa/Duchaineau/Joy)

ROAMing a shrink-wrapped isocontour from an 8B elem Gordon-Bell Prize run

A selective refinement ROAM tile hierarchy starts with image pyramid construction

Multi-resolution tiles are built through local 4-8 wavelet transform filters

We are developing new, ROAM-based dense image correspondence algorithms

- Goal is to unify: 1) image registration, 2) stereo dense correspondence, and 3) optical flow—but make algorithm GPU friendly and progressive!
- Take any two images (not consecutive) and warp first to match second
- Provide subpixel accurate position per fine-resolution pixel
- Work despite camera motion, noise and artifacts, water shimmer, dense urban clutter, moving and shiny objects, parallax from moving view, etc.

Correspondence is computed for pairs of images from the video sequence

• Frames 10 and 31 from aerial video sequence:

Selectively refining correspondence is robust, maps well to GPU/Cell acceleration

Algorithm proceeds coarse-to-fine, matching and straightening for ~10 iterations per level

For level = 0 to LMAX { // A variant of "multi-resolution optical flow"

if level == 0: initialize to identity mapping otherwise: perform 4-8 mesh refinement from level-1 to level

```
For iteration = 1 to 10 {
```

// Matching motion per pixel:

Move each source pixel to closest matching isoline in target -- clamp motion to fraction of a pixel, skip small gradients

 // Warp mesh straightening:
 Least-squares fit a local affine map per 5x5 neighborhood
 Update each pixel map position to the average of its positions in all the nearby affine maps

The kernel benchmarks indicate 22 million pixels per second corresponded per GPU

Ļ

- Proof-of-concept dense correspondence on aerial video
- Current acceleration: 21.9 Mpix/sec registered per GPU
- Details:
 - 219 iterations per second on 1 Mpix
 - 10 iterations total needed
 - Test performed on:
 - Single Nvida 8800GTX-based card
 - AGP 16x interface
 - Single threaded application
 - 2.66 GHz quad-core Intel processor
 - 4GB CPU RAM, 768MB GPU RAM
 - 128 GPU cores, accessed via OpenGL ARB fragment programs

The dense correspondence algorithm successfully stabilizes the imagery

- Robustness is good overall
 - Image borders
 - water
- Issues with tall buildings, trees
 - Foreground/ background splitting

Dense correspondence enables resolution improvements

Resolution can be improved by combining frames \rightarrow proves subpixel accuracy of correspondence

Lessons learned and future directions

- The dense correspondence algorithm is observed to:
 - Eliminate parallax and "false positives"
 - Work robustly for many aerial videos
 - Support resolution enhancement, 3D extraction, and mover detection
 - Run fast on a GPU implementation
 - Real-time 22 Mpix/sec per GPU
 - Fails for tall, thin structures and extreme viewpoint changes
- Future directions are to:
 - Improve correspondence algorithm to detect and honor depth discontinuities
 - Important for cluttered urban environments
 - Fully integrate GPU correspondence into ROAM tile infrastructure
 - Compare GPU to IBM Cell, FPGA and other high-performance hardware options
 - Demonstrate real-time 3D extraction, tracking

